AD-	144 58	B NA	TIONAL LCOTT	PROGRA	M FOR	INSPEC I(U) IAY 81	TION OF	HON-F OF ENGI	EDERAL MEERS	DAMS WALTHAI	•	12	
UNC	ASSIF1	ED	MEM E	TOL AITO	-				F/	G 13/1	3 MI		
													٤
2) 2)					-								
											g. are.	7. 2	
	***			· .	5.		r	-		المنافعة ا	THE THE		
	r	-					g Tiget	,	-		1 4		

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A

1

•

The standard to

CONNECTICUT RIVER BASIN WEST HARTFORD, CONNECTICUT

TALCOTT RESERVOIR DAM

MAIN DAM CT 00490

DIVERSION DIKE CT 00489

DIKE NO. 2 CT 01710

PHASE 1 INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

otic file copy

DEPARTMENT OF THE ARMY NEW ENGLAND DIVISION, CORPS OF ENGINEERS

WALTHAM, MASE The document how level equipmend for public of the

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

1. REPORT NUMBER CT 00490 CT 00489 CT 01710 AD-A14450	BEFORE COMPLETING FORM D. 1. RECIPIENT'S CATALOG NUMBER
ADVALUIE	AL ALL MANAGER OF THE PROPERTY OF THE PER
CT 00490 CT 00489 CT 01710 ADA 1945	68
4. TITLE (and Subsisse)	S. TYPE OF REPORT & PERIOD COVERED
Talcott Reservoir Dam, Main Dam; Diverson Dite; Dike No. 2.	INSPECTION REPORT
NATIONAL PROGRAM FOR INSPECTION OF NON-FEDERAL DAMS	5. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)	S. CONTRACT OR GRANT NUMBER(s)
U.S. ARMY CORPS OF ENGINEERS NEW ENGLAND DIVISION	
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
1. CONTROLLING OFFICE NAME AND ADDRESS DEDT OF THE ADMY CODDS OF PROTUCES	12. REPORT DATE
DEPT. OF THE ARMY, CORPS OF ENGINEERS NEW ENGLAND DIVISION, NEDED	May 1981
424 TRAPELO ROAD, WALTHAM, MA. 02254	13. NUMBER OF PAGES
4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	18. SECURITY CLASS. (of this report)
	UNCLASSIFIED
	ISA. DECLASSIFICATION/DOWNGRADING

APPROVAL FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the obstract entered in Black 20, if different from Report)

18. SUPPLEMENTARY NOTES Cover program reads: Phase I Inspection Report, National Dam Inspection Program; however, the official title of the program is: National Program for Inspection of Non-Federal Dams; use cover date for date of report.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

DAMS, INSPECTION, DAM SAFETY,

Connecticut River Basin West Hartford, Connecticut

20. ABSTRACT (Cantinue on rove .a side if necessary and identify by block number) That flood control project consists of three structures: the Main Dam, the Diversion Dike and Dike No. 2. Each structure is an earth embankment at 3H:1V with a good grass cover and a top width of 12 feet. Based on the visual inspection, review of design information and past operational performance, these structures are judged to be in GOOD condition. These structures are classified as INTERMEDIATE in size and HIGH hazard potential structures. The test flood is the PMF.

DD , FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE

DEPARTMENT OF THE ARMY

NEW ENGLAND DIVISION, CORPS OF ENGINEERS
424 TRAPELO ROAD
WALTHAM MASSACHUSETTS 02254

JUL 0 9 1981

NEDED

Honorable William A. O'Neill Governor of the State of Connecticut State Capitol Hartford, Connecticut 06115

Dear Governor O'Neill:

Inclosed is a copy of the Talcott Reservoir Dam, Main Dam (CT-00490), Diversion Dike (CT-00489) and Dike No. 2 (CT-01710) Phase I Inspection Report, prepared under the National Program for Inspection of Non-Federal Dams. This report is based upon a visual inspection, a review of the past performance and a brief hydrological study of the dam. I approve the report and support the findings and recommendations described in Section 7 and ask that you keep me informed of the actions taken to implement them. This follow-up action is vitally important.

Copies of this report have been forwarded to the Department of Environmental Protection. Copies will be available to the public in thirty days.

I wish to thank you and the Department of Environmental Protection for your cooperation in this program.

Sincerely,

Incl As stated C. E. EDGAR, III Colonel, Corps of Engineers

Commander and Division Engineer

Access	ion For					
NTIS	GRA&I					
DTIC T	AB T					
Unanno						
Justif	ication					
Ву						
Distr	Distribution/					
Avai	lability Codes					
	Avail and/or					
Dist	Special					
1	}					
	} }					
IA-/	\ \					

CONNECTICUT RIVER BASIN WEST HARTFORD, CONNECTICUT

TALCOTT RESERVOIR DAM

MAIN DAM CT 00490

DIVERSION DIKE CT 00489

DIKE NO. 2 CT 01710

PHASE 1 INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

NATIONAL DAM INSPECTION PROGRAM

PHASE I - INSPECTION REPORT

Identification No.:

CT 00489 (Diversion Dike)
CT 00490 (Main Dam)
CT 01710 (Dike No. 2)

Name of Dam:

Talcott Reservoir Dam

West Hartford

County and State:

Hartford County, Connecticut

Stream:

Tributary to Trout Brook

Date of Inspection:

November 17, 1980

BRIEF ASSESSMENT

This flood control project consists of three (3) structures: the Main Dam, the Diversion Dike and Dike No. 2. Each structure is an earth embankment at 3H:1V with a good grass cover and a top width of 12 feet.

Principal dimensions of these three structures are as follows:

Structure	Length (ft.)	Height(ft.)		
Main Dam	1300	30		
Diversion Dike	3125	30		
Dike No. 2	210	18.5		

The Diversion Dike is located 3000 feet north of the Main Dam; while Dike No. 2 lies 600 feet east of the Diversion Dike.

The principal spillways consist of a reinforced concrete riser and 30 inch RCP through the Main Dam and Diversion Dike. The emergency spillways are grassed channels, 40 feet wide in the eastern 1/3 of the Main Dam and 90 feet wide at the eastern end of the Diversion Dike. The reservoir is normally empty except for small sediment pools at the principal spillway inlets. These structures are owned by the State of Connecticut, Department of Environmental Protection.

Based on the visual inspection, review of design information and past operational performance, these structures are judged to be in GOOD condition. There is some erosion due to vehicle trespass, some sloughing of the embankments, and animal burrows.

These structures are classified as INTERMEDIATE in size and HIGH hazard potential structures in accordance with the Recommended Guidelines for Safety Inspection of Dams, by the Corps of Engineers. The impoundment storage at the top of the structures is 1205 ac.-ft.

Failure of any of the embankments could result in the possible loss of more than a few lives and extensive economic damage to numerous homes and buildings along the downstream channel in West Hartford. Depths of inundation at these homes and buildings may range from 2 to 10 feet in the event of failure of the Main Dam, from 4 to 12 feet in the event of failure of the Diversion Dike, and from 1 to 3 feet in the failure of the Dike No. 2.

The test flood is the Probable Maximum Flood (PMF). The test flood has an inflow equal to 4050 cfs and an outflow discharge equal to 2670 cfs at a stillwater elevation of 456.2 which will not overtop the dam (1.8 feet freeboard). -The maximum outflow capacity of the spillways with the water level at the top of the dam is 5400 cfs, which is 203 percent of the test flood outflow.

It is recommended that the following items be studied further by a qualified registered engineer: Investigate the cause of the holes at the outlet end of the emergency spillway and design repairs as necessary (Main Dam). Investigate the low spot in the top of the embankment in the vicinity of the bend between Stations 22 and 23 and design repairs as necessary (Diversion Dike). Investigate the discharge adequacy of the drainage channel which runs along the upstream side of the embankment along that portion adjacent to Route 44 (Diversion Dike). Investigate the erosion and sloughing around the outlet pipe and design repairs as necessary (Diversion Dike). Investigate the minor sloughing in the wet area at the downstream toe of the embankment in the vicinity of Station 8 and design repairs as necessary (Diversion Dike). The reservoir should be visited when flood waters are being impounded to check for problem areas (general).

The following remedial measures should be taken by the owner: Repair of minor sloughing at the outlet and monitoring of seepage throdugh the riprap at the outlet of the Main Dam. Repair of the erosion at the vent, removal of the brush from the riprap at the outlet and clear brush from the drainage channel along the upstream face adjacent to Route 44, at the Diversion Dike. Recreational vehicle access should be eliminated, vehicle ruts should be repaired, animal burrows should be filled, the semi-annual inspections continued, and the existing flood emergency plan amended to provide downstream warning procedures.

Recommendations and remedial measures that should be implemented within one year or two years, as noted, of receipt of this Phase I Inspection Report are further described in Section 7.

JAMES P. PURCELL ASSOCIATES, INC.

Swhin A. Shah

Sudhir A. Shah, P.E. Director of Engineering Connecticut P.E. No. 8012

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Investigation. However, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there by any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the spillway test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and downstream damage potential.

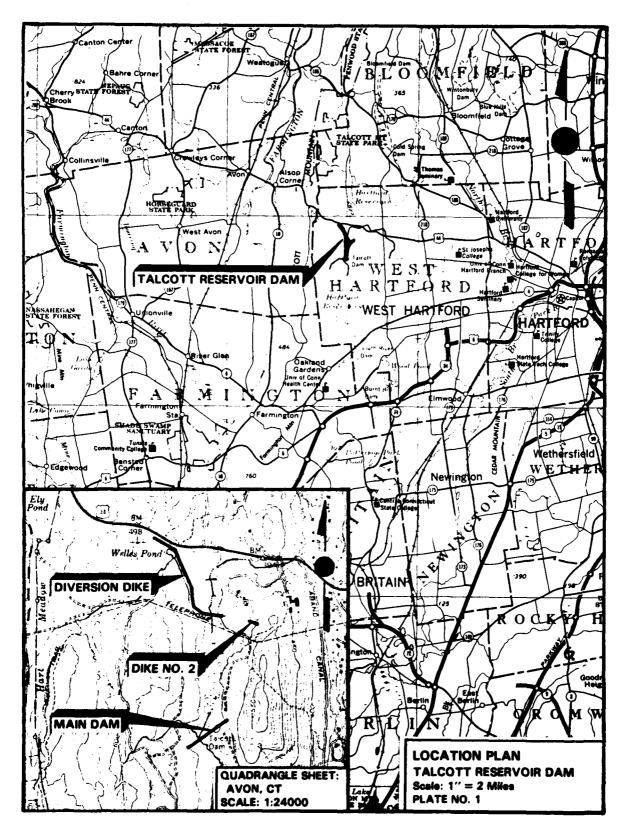
The Phase I Investigation does not include an assessment of the need for fences, gates, no-trespassing signs, repairs to existing fences and railings and other items which may be needed to minimize trespass and provide greater security for the facility and safety to the public. An evaluation of the project for compliance with OSHA rules and regulations is also excluded.

TABLE OF CONTENTS

Section		Page
Letter o	f Transmittal	
Brief As	sessment	
Review B	oard Page	
Preface		i
Table of	Contents	ii-iv
Overview	Photo	v
Location	of Map	vi
	REPORT	
1. Proj	ect Information	
1.1	General	1
	a. Authorityb. Purpose of Inspection	
1.2	Description of Project	1
	 a. Location b. Description of Dam and Appurtenances c. Size Classification d. Hazard Classification e. Ownership f. Operator g. Purpose of Dam h. Design and Construction History i. Normal Operational Procedures 	
1.3	Pertinent Data	5
2. Engi	neering Data	
2.1	Design	9
2.2	Construction	9
2.3	Operation	9
2.4	Evaluation	9

TABLE OF CONTENTS (Cont'd)

Section						
3.	Visual Inspection					
	3.1	Findings	11			
		 a. General b. Main Dam and Appurtenant Structures c. Diversion Dike and Appurtenant Structures d. Dike No. 2 e. Reservoir Area f. Downstream Channel 				
	3.2	Evaluation	14			
4.	Oper	ational and Maintenance Procedures				
	4.1	Operational Procedures	16			
		a. Generalb. Description of Any Warning System in Effect				
	4.2	Maintenance Procedures	16			
		a. Generalb. Operating Facilities				
	4.3	Evaluation	16			
5.	Eval	uation of Hydraulic/Hydrologic Features				
	5.1	General	17			
	5.2	Design Data	17			
	5.3	Experience Data	17			
	5.4	Test Flood Analysis	17			
	5.5	Dam Failure Analysis	18			
6.	Eval	uation of Structural Stability				
	6.1	Visual Observations	20			
	6.2	Design and Construction	20			
	6.3	Post-Construction Changes	21			


TABLE OF CONTENTS (Cont'd)

Section			
6.4 8	Seismic Stability	21	
7. Asses	ssment, Recommendations and Remedial Measures	3	
7.1	Dam Assessment	22	
	a. Conditionb. Adequacyc. Urgency		
7.2	Recommendations	22	
7.3	Remedial Measures	23	
7.4	Alternatives	24	
	APPENDICES		
Appendix	A - Inspection Checklist	A-1	
Appendix	B - Engineering Data	B-1	
Appendix	C - Photographs	C-1	
Appendix	D - Hydrologic and Hydraulic Computations	D-1	
Appendix	E - Information as Contained in the National Inventory of Dams	E-1	

OVERVIEW PHOTO - TALCOTT RESERVOIR DAM

PHOTO TAKEN DECEMBER 15, 1980

NATIONAL DAM INSPECTION PROGRAM -

PHASE I - INSPECTION REPORT

NAME OF DAM: TALCOTT RESERVOIR DAM (Main Dam, Diversion Dike, Dike No. 2)

SECTION 1

PROJECT INFORMATION

1.1 General

a. Authority:

Public Law 92-367, August 8, 1972, authorized the Secretary of the Army through the Corps of Engineers to initiate a national program of dam inspections throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. James P. Purcell Associates, Inc. has been retained by the New England Division to inspect and report on selected dams in the State of Connecticut. Authorization and notice to proceed was issued to James P. Purcell Associates, Inc., under a letter from William E. Hodgson, Jr., Colonel, Corps of Engineers. Contract No. DACW33-81-C-0009 has been assigned by the Corps of Engineers for this work.

b. Purpose:

- Perform technical inspection and evaluation of non-federal dams to identify conditions which threaten the public safety and thus permit correction in a timely manner by non-federal interests.
- Encourage and prepare the States to initiate quickly, effective dam safety programs for non-federal dams.
- To update, verify and complete the National Inventory of Dams.

1.2 Description of Project

a. Location:

The Talcott Reservoir structures are located in the Town of West Hartford, Hartford County, Connecticut (See Plate No. 1).

The Diversion Dike is located on the south side of U.S. Route 44, approximately 2.8 miles east of the village of Avon. The dike is built across a tributary to Trout Brook and is located 4.4 miles upstream of the confluence with Trout Brook. The dike is at latitude $41^{\circ}-47^{\circ}-14^{\circ}$ and longitude $72^{\circ}-47^{\circ}-06^{\circ}$.

The Main Dam is located approximately 3000 feet due south of the Diversion Dike. The dam is built across a tributary to Trout Brook and is located 1700 feet upstream of Hartford Reservoir No. 2. The dam is at latitude $41^{\circ}-46^{\circ}-42^{\circ}$ and longitude $72^{\circ}-47^{\circ}-10^{\circ}$.

The Dike No. 2 is located across a small valley approximately 600 feet east of the east end of the Diversion Dike. The dike does not cross a water course but is used to contain flood waters within the reservoir. It is located at latitude $41^{\circ}-47^{\circ}-10^{\circ}$ and latitude $72^{\circ}-47^{\circ}-10^{\circ}$.

Trout Brook is a tributary to the south branch of the Park River which flows through Hartford, Connecticut to the Connecticut River.

All elevations used in this report are based on the Metropolitan District Commission (MDC) Datum, except as noted. The MDC Datum minus 2.08 feet equals the National Geodetic Vertical Datum (NVGD).

b. Description of Dam and Appurtenances:

The Talcott Reservoir Project consists of a Main Dam, a Diversion Dike and the Dike No. 2. They are all earth embankments with good grass covers, a top width of 12 feet at elevation 458.0 and side slopes of 3H:1V.

The Main Dam is 1300 feet long and 30.0 feet high. It has an embankment and foundation drain along the downstream toe in the vicinity of the outlet. The Main Dam is unzoned compacted earth fill with a 12 foot wide cutoff trench.

The Diversion Dike is 3125 feet long and 30.0 feet high. It has an embankment and foundation drain along the downstream toe in the vicinity of the outlet and at the northern end of the dike. Approximately 1200 feet of the dike was constructed partially of rockfill with an impervious upstream face and top. There is a two layer granular filter on the upstream face of the rockfill. The remainder of the dike is unzoned compacted earth fill. There is a 12 foot wide cutoff trench.

The Dike No. 2 is 210 feet long and 18.5 feet high. It has a filter blanket seepage drain along the downstream toe. There is a 12 foot wide cutoff trench.

The outlet works consist of a principal spillway and an emergency spillway at the Main Dam and the Diversion There are no outlet works at the Dike No. 2. Both principal spillways consist of reinforced concrete risers and a 30 inch reinforced concrete pipe extending from the riser, through the embankments, to a free outlet at the downstream face. Flow into these 30 inch pipes is restricted by steel oriface plates attached to the upstream end of the pipes. This was done in order to achieve the desired outflow rates with use of the 30 inch pipes required for internal inspection. The crest of the risers are at elevation 435.0 and are protected by angle iron trash racks. The pipes are vented by a 4 inch diameter steel pipe extending to elevation 452.5. There are no drains into the risers and the small sediment pools cannot be emptied.

The emergency spillways are grassed earth channels at the eastern end of the Diversion Dike and the eastern third of the Main Dam. The crests of the spillways are 30 foot long level sections at elevation 452.5. The bottom widths are 40 feet at the Main Dam and 90 feet at the Diversion Dike, and the side slopes are 3H:lV. The lengths of the spillways are 300 feet at the Main Dam and 500 feet at the Diversion Dike.

c. Size Classification:

The size classifications of all three structures are INTERMEDIATE as per criteria set forth Recommended Guidelines for Safety Inspection of Dams by the Corps of Engineers. The impoundment storage at the top of all three structures is 1205 acre-feet (within the range of 1000 to 50,000 ac.-ft.). The maximum height of the Main Dam is 30.0 feet (within the range of 25 to 40 feet-small classification), of the Diversion Dike is 30.0 feet (within the range of 25 to 40 feet-small classification) and of the Dike No. 2 is 18.5 feet (range 25 to 40 feet-small classification). The size classifications of these structures is based on the impoundment storage criteria.

d. Hazard Classification:

The hazard classifications for all three structures are HIGH as per the criteria set forth in the Recommended Guidelines for Safety Inspection of Dams, by the Corps of Engineers.

In the event of failure of any of the structures, numerous homes and buildings in an urbanized area of West Hartford could suffer excessive damage. The potential exists for the loss of more than a few lives at numerous downstream homes.

Depths of inundation at these homes and buildings may range from 2 to 10 feet in the event of failure of the Main Dam, from 4 to 12 feet in the event of failure of the Diversion Dike, and from 1 to 3 feet in the failure of the Dike No. 2. No homes would be inundated by pre-failure flows. These homes and buildings range from approximately 0 to 10 feet above normal brook levels.

e. Ownership:

The Talcott Reservoir structures are presently owned and maintained by: The State of Connecticut, Department of Environmental Protection.

f. Operator:

The person in charge of maintenance of the structures is:

Mr. Anthony Cantele Regional Director, Region I Conservation and Preservation Division Department of Environmental Protection P.O. Box 161 Pleasant Valley, Connecticut 06063 Telephone: (203) 379-0771

g. Purpose:

These floodwater retarding structures provide flood protection to the flood plain on the South Branch of the Park River.

h. Design and Construction History:

The design of the project was completed by the Soil Conservation Service in 1963 and construction was completed in 1964.

i. Normal Operating Procedures:

There are no day-to-day operational procedures for these structures. The reservoir is normally empty except for small sediment pools around the principal spillway risers and all flow is discharged through the two principal spillways.

4

1.3 Pertinent Data

a. Drainage Area:

The Talcott Reservoir drainage basin is irregular in shape with a total drainage area of 1.6 square miles (see drainage area map in Appendix D). The topography is generally rolling terrain with elevations ranging from a high of 820 feet to a low of 435.0 feet at the principal spillway crests. Stream and basin slopes are moderate, 5 percent and 10 percent, respectively. The sediment pools occupy a negligible portion of the watershed, however, approximately 25 acres between the Main Dam and Diversion Dike consist of a shallow swamp at elevation 435.0.

b. Discharge at Dam Site:

There are no specific discharge records available. Listed below are calculated discharge values of the emergency spillways and outlet works (30 inch principal spillways).

- Outlet Works: Two 30 inch pipes with inverts at elevation 431.0 and a total discharge capacity of 120 cfs at elevation 452.5.
- 2. Maximum known discharge at dam site: Unknown.
- Ungated spillway capacity at top of dam: 1760 cfs (Main Dam) and 3500 cfs (Diversion Dike) at elevation 458.0.
- 4. Ungated spillway capacity at test flood elevation: 860 cfs (Main Dam) and 1680 cfs (Diversion Dike) at elevation 456.2.
- Gated spillway capacity at normal pool elevation: N/A
- Gated spillway capacity at test flood elevation: N/A
- Total spillway capacity at test flood elevation: 860 cfs (Main Dam) and 1680 cfs (Diversion Dike) at elevation 456.2.
- Total project discharge at top of dam: 5400 cfs at elevation 458.0.
- Total project discharge at test flood level: 2670 cfs at elevation 456.2.

c.	Ele	vation (Feet Above MDC Datum):	•
	1.	Stream bed at toe	428.0 (Main Dam) 428.0 (Diversion Dike) 439.5 (Dike No. 2)
	2.	Bottom of cutoff	428.0 (Main Dam) 425.5 (Diversion Dike) 439.5 (Dike No. 2
	3.	Maximum tailwater	Unknown
	4.	Normal pool	435.0
	5.	Full flood control pool	452.5
	6.	Spillway crest	452.5 (emergency spillway)
	7.	Design surcharge	455.4
	8.	Top of dam and dikes	458.0
	9.	Test flood level	456.2
đ.	Res	ervoir (Length in Feet):	
	1.	Normal pool	3000
	2.	Flood control pool	3000
	3.	Spillway crest pool	3000 (emergency spillway)
	4.	Top of dam and dikes	3000
	5.	Test flood pool	3000
e.	Sto	rage (acre-feet):	
	1.	Normal pool	25±
	2.	Flood control pool	826
	3.	Spillway crest pool	826 (emergency spillway)
	4.	Top of dam and dikes	1205
	5.	Test flood pool	1086

•

f.	Reservo	ir	Surface	(acres):
	VESCTAC			/

1.	Normal pool	24.2
2.	Flood control pool	65.7

- 3. Spillway crest 65.7 (emergency spillway)
- 4. Test flood pool5. Top of dam and dikes80.5

q. Dam and Dikes:

1.	Type	Earth embankments
2.	Length	1185 (Main Dam) 2860 (Diversion Dike) 210 (Dike No. 2)

- 3. Height

 30 feet (Main Dam)
 30 feet (Diversion Dike)
 18.5 feet (Dike No. 2)
- 4. Top width 12 feet
 5. Side slopes 3H:1V
- 6. Zoning

 Unzoned compacted earth fill. Also rockfill on portions of Diversion Dike.
- 7. Impervious Core None
- 8. Cutoff 12 foot wide cutoff trenches
- 9. Grout curtain None
 10. Other --
- h. Diversion and Regulating Tunnel: N/A
- i. Spillway (emergency spillway)
 - Type Grassed channel
 Width of channel 40 feet (Main Dam) 90 feet (Diversion Dike)
 - 3. Crest elevation 452.5

4.	Gates	None
5.	U/S Channel	Grassed channel
6.	D/S Channel	Grassed channel
7.	General	Good condition
_		

j. Regulating Outlets:

(principal spillways)

Refer to Paragraph 1.2b - "Description of Dam and Appurtenances" for description of Outlet Works.

		Main Dam	Diversion Dike
1.	Invert	431.0	431.0
2.	Size	30 inch	30 inch
3.	Description	Reinforced concrete pipe	Reinforced concrete pipe
4.	Control mech- anism	None	None
5.	Other	Steel oriface plate	Steel oriface plate
		Riser Crest: Elevation: 435.0	Riser Crest: Elevation: 435.0

SECTION 2

ENGINEERING DATA

2.1 Design

The available design data consists of the following documents and plans prepared by the Soil Conservation Service.

- a. "As-built" drawings of the construction plans, Talcott Reservoir Dam, 1963. Copies of these plans are included in Appendix B-3.
- b. Original design calculations and report.
- c. Stage-storage, stage-reservoir area, and stagedischarge curves.
- d. Information storage and retrieval form.

Refer to Appendix B-1 for location of this material.

2.2 Construction

The SCS provided inspection during construction of the structures, which was completed in 1964. The SCS has construction inspection reports in storage. These reports were not reviewed in the preparation of this Phase I Inspection Report.

2.3 Operation

There is no day-to-day operational procedures. The site is visually inspected semi-annually by the State of Connecticut. Inspection records are available from the owners.

2.4 Evaluation

a. Availability:

All information concerning these structures was gathered by field investigation and meetings with the Soil Conservation Service and from the files of the Department of Environmental Protection, Water Resources Unit, Dam Safety Engineers, State Office Building, Hartford, Connecticut.

b. Adequacy:

The information that was available complimented a complete visual inspection of this facility and is adequate at this time.

c. Validity:

The engineering design data provided by the SCS has been deemed adequate for the purpose of this Phase I Inspection Report. The as-built plans appear to adequately represent the present configuration of the structures based upon the visual inspection. This investigation did not include a detailed engineering check of the SCS design file.

SECTION 3

VISUAL INSPECTION

3.1 Findings

a. General:

The visual inspection of the Talcott Reservoir Structures was conducted on November 17, 1980 and a copy of the visual inspection check list is contained in Appendix A of this report.

The following procedure was used:

- Inspection of the upstream reservoir area which would be impounded by the dam and dikes.
- Visual inspection of the face and top of the dam, dikes and spillways for cracks, settlement, seepage, etc.
- Inspection of the outlet works and other appurtenances as to their existence, location and operability.
- Review of procedures that could be utilized in the event of an emergency situation.
- A check of the downstream area for seepage, piping, boils or other indications of abnormal conditions.
 The downstream hazard potential in the event of dam or dike failure was investigated.
- 6. Photographs of the general area of the dam and of specific items of note were taken and are included in Appendix C of this report.

Before the inspection, the available existing data was studied and reviewed.

b. Main Dam and Appurtenant Structures:

- Crest: The dam consists of an earth embankment with no evidence of misalignment or settlement. The top of the dam is 12 feet wide and contains a grassed service road. There are wheel ruts and foot paths along the top of the dam, but no bare earth is exposed (Photo C-1).
- Upstream Face: The upstream face consists of a grassed earth slope (Photos C-2, C-4). Only a few

small animal burrows, approximately 1 inch in diameter, were noted. Some slightly larger animal burrows were noted in the upstream toe approximately 100-150 feet west of the emergency spillway.

- 3. Downstream Face: The downstream face is an earth slope with a good grass cover (Photo C-3). Numerous large animal burrows were noted all along the toe of the embankment. These burrows were up to 6 inches in diameter. There are several large holes associated with animal burrows at the joint between the embankment and west emergency spillway embankment. The largest of these is shown in Photo C-7 and is approximately 2 feet in diameter. Minor sloughing is occurring around the outlet pipe.
- 4. Principal Spillway: The principal spillway consists of reinforced concrete riser and uncontrolled 30 inch reinforced concrete pipe extending through the dam. These concrete structures are in good condition. The inside dimensions of the riser are 3.5 feet by 4 feet. The riser is protected by an angle iron trash rack (Photo C-8). The pipe outlets to a riprap stilling pool (Photo C-10). There is standing water in the riprap at the outlet (Photo C-9) which is approximately 1 foot higher than the stilling pool.
- 5. Emergency Spillway: The emergency spillway is a 40 foot wide grassed channel with side slopes of 3H:IV and is approximately 300 feet long (Photo C-5). There are vehicle ruts with some bare earth in places on the floor and sides of the channel.

Several large holes were noted in the floor of the channel at the downstream end (Photo C-6). These appear to contain animal burrows at the bottom. The largest hole is 3 feet deep and approximately 7 feet by 10 feet wide. The downstream floor of the spillway ends at a 2H:1V slope down to existing woodland. This slope is vegetated with brush and small trees. The spillway floor appears to have been extended downstream in this area (Overview Photo).

c. Diversion Dike and Appurtenant Structures:

 Crest: The dike consists of an earth embankment with no evidence of misalignment (Photos C-11, C-16, C-17). There is an area of possible settlement (8 inches maximum) of the upstream edge of the top of the dike at approximately Station 22+50. There are wheel ruts all along the top with bare earth in places (Photo C-12). The top width is 12 feet.

2. Upstream Face: The upstream face is a grassed earth slope (Photos C-11, C-15, C-17). An erosion gully (up to 1.0 foot deep by 1.5 feet wide) has formed below a concrete pad next to the principal spillway vent inlet (Photo C-19).

There is an overgrown channel along the upstream side of the dike at the northern end which carries water from north of Route 44 into the reservoir (Photo C-11). The upper portion of this channel is higher than the top of the dike and it appears possible that high discharges could flow both in the channel and over the top of the dike. The as-built plans indicate a 10 foot wide trapezoidal channel approximately 2 to 3 feet deep.

- 3. Downstream Face: The downstream face is a grassed earth slope (Photos C-14, C-16). There is an area of possible seepage (no visible flow) and minor sloughing at the base of the embankment at approximately Station 8 (Photo C-13). There are numerous small animal burrows and riprap outcrops along the rockfill area between Stations 10 and 22 (Photo C-14). Sloughing is occurring at the riprap around the principal spillway outlet (Photo C-21).
- 4. Principal Spillway: The principal spillway consists of a reinforced concrete riser and uncontrolled 30 inch reinforced concrete pipe extending through the Dike. These concrete structures are in good condition. The inside dimensions of the riser are 3.5 feet by 4 feet. The riser is protected by an angle iron trash rack (Photo C-20). The pipe outlets to a riprap stilling pool (Photo C-22).
- foot wide grassed channel with side slopes of 3H:1V and is approximately 500 feet long (Photo C-18). There are vehicle ruts on the floor and sides of the channel (Photo C-17). There is a damp area with cattails in the floor along the toe of the eastern embankment near the downstream end. This is probably due to groundwater seepage from the hillside in which the easterly spillway wall was excavated. Although damp, no moving water was noted in this area during the inspection.

d. Dike No. 2:

1. Crest: The dike consists of an earth embankment with no evidence of misalignment or settlement (Photo C-23). The top is 12 feet wide and contains only minor wheel paths.

 Upstream Face: The upstream face is a grassed earth slope (Photo C-24). No animal burrows or

erosion were noted.

 Downstream face: The downstream face is a grassed earth slope (Photo C-23). No animal burrows or erosion were noted.

e. Reservoir Area:

There is no permanent reservoir except for small sediment pools at each principal spillway inlet. The majority of the reservoir area is woodland. There is a 25 acre swamp between the Main Dam and Diversion Dike (Overview Photo). No unusual geological features were noted that could be expected to adversely affect the embankments or appurtenant structures.

f. Downstream Channel:

The downstream channels consist of short excavated earth channels which extend to existing streams (Photo C-10, Main Dam) (Photo C-22, Diversion Dike).

3.2 Evaluation

Based on the visual inspection, the Talcott Reservoir structures appear to be in GOOD condition overall and there were no major areas of distress noted. Specific areas of concern that were noted are:

- a. The erosion due to vehicle trespass.
- b. The animal burrows in the embankments.
- c. The apparent inadequacy of the discharge capacity of the channel at the north end of the Diversion Dike.
- d. The sloughing of the downstream face of the Diversion Dike around the outlet and the minor sloughing near Station 8.
- e. The holes in the downstream end of the emergency spillway at the Main Dam.

It should be noted that this floodwater retarding reservoir was not filled at the time of inspection and

thus the adequacy of the structure with regard to the functioning of the blanket and toe drain and also with regard to potential seepage problems could not be fully assessed. The reservoir should be visited by a qualfied registered engineer when floodwaters are being impounded to check for problem areas. A record of maximum water levels should be kept for reference purposes.

SECTION 4

OPERATIONAL AND MAINTENANCE PROCEDURES

4.1 Operational Procedures

a. General:

There are presently no formal operational procedures for this facility.

b. Description of Any Warning System in Effect:

There is a formal written "Flood Emergency Plan" in effect for this facility. During a flood "watch", the structures are inspected to insure that the outlets are clear and free of debris. During a flood "warning", State personnel visit the site periodically (2-3 hours) and report on unusual situations. In the event of an emergency situation, the field inspector would call the State Dam Safety Engineer and a decision would be made as to further action to be taken. A copy of the applicable portions of this flood emergency plan is included in Appendix B.

4.2 Maintenance Procedures

a. General:

The grass cover is moved on an annual basis. Other maintenance such as painting the track racks and repairing erosion areas is performed on an "as needed" basis based on the findings of the semi-annual inspections.

b. Operating Facilities:

Maintenance of the principal and emergency spillways is as described above in Paragraph 4.2a.

4.3 Evaluation

The operational and maintenance procedures are generally satisfactory, but there are areas requiring improvement.

The formal written flood emergency plan should be amended to include downstream warning procedures.

SECTION 5

EVALUATION OF HYDRAULIC/HYDROLOGIC FEATURES

5.1 General

The Talcott Reservoir structures will create an impoundment with a total storage capacity of 826 ac.—ft. at elevation 452.5, the emergency spillway crest elevation. Each foot of depth in the reservoir above the emergency spillway crest can accommodate approximately 66 ac.—ft. The emergency spillways are grassed earth channels with a total width of 130 feet and a crest 5.5 feet below the top of the dam. The drainage area is 1.61 square miles and stream and basin slopes are moderate, 5 percent to 10 pecent, respectively.

5.2 Design Data

- a. Original design data (Standard SCS Design Methods) is available for this watershed and the structures of the Talcott Reservoir. To verify existing design information, USGS topographic maps (Scale 1" = 2000') were utilized to develop hydrologic parameters such as drainage area, basin length, time of concentration, and other runoff characteristics. Surface area and storage values were verified and taken from the original design data. Some of the pertinent hydraulic design data was confirmed by actual field measurements at the time of visual inspection.
- b. The original design discharge for the facility is 1780 cfs with a corresponding freeboard of 2.5 feet.
- c. Outflow values (routing procedures) and dam overtopping analyses were computed in accordance with the guidelines developed by the Corps of Engineers. Judgment was used in calculating final values outlined in this report, which are quite approximate and should not be considered a substitute for actual detailed analysis.

5.3 Experience Data

Historical data for recorded reservoir levels is not available for this dam.

5.4 Test Flood Analysis

Recommended Guidelines for the Safety of Dams by the Corps of Engineers were used for the selection of the "Test Flood". This project is classified as HIGH hazard and INTERMEDIATE size. Guidelines indicate that the Probable

Maximum Flood (PMF) be used as the "Test Flood" for these classifications. The watershed has a total area of 1.61 square miles. Snyder's lag was calculated to be 2.9 hours and a Snyder peaking coefficient of 0.625 was used. The 200 square mile - 24 hour Probable Maximum Precipitation (PMP) is 21.5 inches. The flood hydrograph package, HEC-1 computer program, developed by the Corps of Engineers was utilized to develop the inflow hydrograph, route the flood through the reservoir and for the dam overtopping analysis. A "Test Flood" inflow equal to the PMF was calculated to be 4050 cfs (2510 csm) and 1/2 the PMF has an inflow value of 2020 cfs (1260 csm).

The emergency spillway capacity is hydraulically adequate to pass the "Test Flood" (PMF) and overtopping of the structures will not occur. The maximum outflow capacity of the project without overtopping the structures is 5400 cfs. This corresponds to 203 percent of the test flood outflow. The maximum outflow discharge value for the "Test Flood" is 2670 cfs corresponding to a depth of flow over the emergency spillways of 3.7 feet and a freeboard of 1.8 feet. A spillway rating curve, outlet rating curve and a stage-storage curve are included in Appendix D of this report.

At the emergency spillway crest elevation of 452.5, the capacity of the two 30 inch outlet structures is 120 cfs. It will require approximately 5.5 days to empty the reservoir assuming a water surface initially at the emergency spillway crest.

The reservoir was assumed to be initially empty for the test flood analysis. It was also assumed that no blockage of the spillways occurred. The affect of tailwater was not considered.

5.5 Dam Failure Analysis

a. General:

These structures are classified as HIGH hazard structures. Failure discharge could cause damage and the possible loss of more than a few lives due to high velocities, impact from debris, and flooding to numerous residential homes and buildings along the downstream channels in West Hartford. These homes and buildings range from approximately 0 feet to 10 feet above normal brook levels.

The calculated failure discharges are 28,000 cfs (Main Dam), 57,000 cfs (Diversion Dike) and 4200 cfs (Dike No. 2) at pool levels equal to the emergency spillway crest. The assumed breach lengths are 140 feet (Main Dam), 280 feet (Diversion Dike) and 50 feet (Dike No.

2). Water surface elevations due to structure failure are listed in Appendix D on Pages D-19, D-29 and D-39.

b. Main Dam:

The pre-failure flow downstream would be the principal spillway flow of 75 cfs, corresponding to a depth of flow of approximately 2 feet. No structures would be inundated by this pre-failure flow. The failure impact area has been extended downstream 29,000 feet to North Main Street. Numerous homes in this impact area may be inundated by from 2 to 10 feet above ground level. Hartford Reservoirs Nos. 2, 5 and 1 may be overtopped by failure of the Main Dam. Additional damage is possible downstream.

c. Diversion Dike:

The pre-failure flow downstream would be the principal spillway flow of 45 cfs (lower than Main Dam flow due to oriface plates), corresponding to a depth of flow of approximately 2 feet. No structures would be inundated by this pre-failure flow. The failure impact area has been extended downstream 20,000 feet to North Main Street. Numerous homes in this impact area may be inudated by from 1 to 3 feet above ground level. Additional damage is possible downstream.

d. Dike No. 2:

There would be no pre-failure flow for the dike. The failure impact area has been extended downstream 19,000 feet to North Main Street. Numerous homes in this impact area may be inundated by from I to 3 feet above ground level. Additional damage is possible downstream.

SECTION 6

EVALUATION OF STRUCTURAL STABILITY

6.1 Visual Observation

a. General:

The visual inspection revealed no signs of major physical distress. It should be noted that this floodwater retarding reservoir was not filled at the time of inspection and thus the adequacy of the structures with regard to the functioning of the blanket and toe drains and also with regard to potential seepage problems could not be fully assessed.

b. Main Dam:

The earth embankment and emergency spillway appear in good general condition. The top is level and the embankment faces are well vegetated and appear stable.

There is a series of large holes on the floor of the emergency spillway near the discharge end. These range in size up to 7 feet by 10 feet in area and 3 feet deep. These large holes appear to have animal holes at their bottom. Several other large animal burrows were noted on the embankment.

c. Diversion Dike:

The earth embankment and emergency spillway appear in good general condition. The most significant visual observations related to the stability of the embankment are the apparent 8 inch low spots in the embankment crest in the vicinity of Stations 22 and 23 and the headward erosion of the toe of the embankment in the area of the 30 inch RCP outlet pipe and cradle.

d. Dike No. 2:

The earth embankment appears in good general condition. The top is level and the embankment faces are well vegetated and appear stable.

6.2 Design and Construction

The design information available consists of the design calculations and report, as-built construction plans, and construction reports. The location of this information is given in Appendix B-1.

6.3 Post-Construction Changes

There have been no post-construction changes to the structures since completion in 1964.

6.4 Seismic Stability

The structures are in Seismic Zone 1 and hence do not require evaluation for seismic stability according to the Corps of Engineers Recommended Guidelines.

SECTION 7

ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES

7.1 Dam Assessment

a. Condition:

Based on the visual inspection, past performance and hydraulic/hydrologic evaluation, the Talcott Reservoir structures and appurtenances are judged to be generally in GOOD condition. Items of concern that should be addressed as a result of this inspection are listed in Sections 7.2 and 7.3

b. Adequacy:

The information available is such that the assessment of the safety of the structures should be based on the visual inspection results, the past operational performance and the design information that is available.

c. Urgency:

The recommendations and remedial measures described below should be implemented by the owner within two years after receipt of this Phase I Inspection Report, except as noted.

7.2 Recommendations

It is recommended that the owner engage a qualified registered engineer to carry out the following actions and that his recommendations be implemented.

a. Main Dam:

 Investigate the cause of the holes at the outlet end of the emergency spillway and design repairs as necessary within one year.

b. Diversion Dike:

- Investigate the low spot in the top of the embankment in the vicinity of bend between Stations 22 and 23 and design repairs as necessary.
- Investigate the discharge adequacy of the drainage channel which runs along the upstream side of the embankment along that portion adjacent to Route 44 within one year.

- Investigate the erosion and sloughing around the outlet pipe and design repairs as necessary within one year.
- 4. Investigate the minor sloughing in the wet area at the downstream toe of the embankment in the vicinity of Station 8 and design repairs as necessary.

c. General:

 The reservoir should be visited when floodwaters are being impounded to check for problem areas. A record of maximum water levels should be kept for reference purposes.

7.3 Remedial Measures (Operation and Maintenance Procedures)

a. Main Dam:

- Repair the minor sloughing in the vicinity of the outlet pipe and cradle, and cut the brush in the riprap in this area.
- Monitor the seepage through the riprap area at the outlet pipe.

b. Diversion Dike:

- Repair the erosion gully on the upstream face which originates from the concrete pad below the vent pipe.
- 2. Remove all brush from the riprapped stilling pool.
- Clear the brush from the drainage channel along the upstream side of the embankment along that portion adjacent to Route 44.

c. General:

- Repair vehicle tracks and footpaths on the embankments and emergency spillways.
- During the semi-annual inspections, identify all animal burrows and repair as necessary.
- Recreational vehicle access to the structures should be eliminated.
- 4. Continue the semi-annual technical inspection program.

5. The existing formal written flood emergency plan should be amended to include downstream warning procedures.

7.4 Alternatives

There are no practical alternatives to the above stated recommendations.

APPENDIX A

INSPECTION CHECK LIST

INSPECTION CHECK LIST PARTY ORGANIZATION

PROJ	ECT Talcott Reservoir D - Main Dam - Diversion Dike	am —	TIME	9:00		4:00 p.m.	
	- Dike No. 2				ertly Cl	oudy 	DN.S.
PART	<u>¥</u> :						
1	R. Johnston, JPPA	_	6				
2	J. Hewes, JPPA	_					
3	J. Walsh, Baystate Environmental Consultant		8.				
4	Environmental Consultant	:s, 	inc.				
5			10				
	OJECT FFATURE		SPFCTED			RFMARK	_
-	Hydraulics						
	Structural						
	Geotechnical					 	
							
							
							
-							
							
							
		A _	1				

A-]

INSPECTION CHECK LIST				
PROJECT Talcott Reservoir Dam	DATE November 17, 1980			
PROJECT FEATURE Main Dam	NAME			
DISCIPLINE	NAME			
	<u> </u>			
AREA EVALUATED	CONDITION			
DAM EMBANKMENT				
Crest Elevation 458.0	Good grass cover. Wheel ruts.			
Current Pool Elevation 435.0	Principal spillway riser crest.			
Maximum Impoundment to Date	Unknown			
Surface Cracks	None observed			
Pavement Condítion	N/A			
Movement or Settlement of Crest	None observed			
Lateral Movement	None observed			
Vertical Alignment	Good			
Horizontal Alignment	Good			
Condition at Abutment and at Concrete Structures	Good. Trees close to upstream embankment.			
Indications of Movement of Structural Items on Slopes	None observed.			
Trespassing on Slopes Vegetation on Slopes Sloughing.or Erosion of Slopes or Abutments	Yes. Vehicle ruts and campfire. Good grass cover. Numerous animal burrows. Depression in downstream face near emergency spillway.			
Rock Slope Protection - Riprap Failures	Riprap around outlet is overgrown. Minor sloughing.			
Unusual Movement or Cracking at or near Toes	None observed			
Unusual Embankment or Downstream Seepage	Water in riprap around outlet, 1 foot higher than outlet pool.			
Piping or Boils	None observed			
Foundation Drainage Features)	None observed. Plans show granular filter drains.			
Toe Drains				
Instrumentation System	None observed			

A-2

INSPECTION CHECK LIST DATE November 17, 1980 Talcott Reservoir Dam PROJECT FEATURE Diversion Dike NAME DISCIPLINE_ NAME _ AREA EVALUATED CONDITION DIKE FMBANKMENT 458.0 Good grass cover. Wheel ruts. Crest Elevation 435.0 Principal spillway riser crest. Current Pool Elevation Unknown Maximum Impoundment to Date None observed Surface Cracks N/A Pavement Condition Possible slight settlement (less Movement or Settlement of Crest than 8 inches) at Station 22+50. None observed Lateral Movement Good Vertical Alignment Good Horizontal Alignment Good. Sloughing around principal Condition at Abutment and at spillway outlet. Concrete Structures Indications of Movement of None observed. Structural Items on Slopes Trespassing on Slopes Yes. Vehicle ruts. Good grass cover. Vegetation on Slopes Sloughing or Erosion of Slopes Numerous animal burrows. or Abutments Rock Slope Protection - Riprap Riprap around outlet sloughed and Failures overgrown. Unusual Movement or Cracking at Minor undulations along downstream or near Toes face in rock fill areas. Unusual Embankment.or Downstream Active seepage at downstream toe at Station 8+00. Seepage Piping or Boils None observed Rock fill observed. Plans also Foundation Drainage Features) show granular filter drains. Toe Drains None observed. Instrumentation System

A-3

INSPECTION CHECK LIST				
PROJECT Talcott Reservoir Dam DATE November 17, 1980				
PROJECT FEATURE Dike No. 2	NAME			
DISCIPLINE	NAME			
AREA EVALUATED	CONDITION			
DIKE EMBANKMENT				
Crest Elevation 458.0	Good grass cover			
Current Pool Elevation	N/A			
Maximum Impoundment to Date	Unknown			
Surface Cracks	None observed			
Pavement Condition	N/A			
Movement or Settlement of Crest	None observed			
Lateral Movement	None observed			
Vertical Alignment	Goad			
Horizontal Alignment	Good			
Condition at Abutment and at Concrete Structures	Good. No structures.			
Indications of Movement of Structural Items on Slopes	N/A			
Trespassing on Slopes Vegetation on Slopes Sloughing or Erosion of Slopes or Abutments	Yes Minor wheel ruts. Good grass cover. None observed.			
Rock Slope Protection - Riprap Failures	n/a			
Unusual Movement or Cracking at or near Toes	None observed			
Unusual Embankment or Downstream Seepage	None observed			
Piping or Boils	None observed			
Foundation Drainage Features)	None observed. Plans show granular filter drain.			
Toe Drains				
Instrumentation System	None observed.			

.

•

INSPECTION	CHECK LIST
PROJECT Talcott Reservoir Dam	DATE November 17, 1980
PROJECT FEATURE Main Dam	NAME
DISCIPLINE	NAME
AREA EVALUATED	CONDITION
OUTLET WORKS - INTAKE CHANNEL AND INTAKE STRUCTURE	
a. Approach Channel	Small pond
Slope Conditions	Grass and cattails.
Bottom Conditions	Cattails.
Rock Slides or Falls	None observed
Log Boom	None observed
Debris	None observed
Condition of Concrete Lining	N/A
Drains or Weep Holes	N/A
b. Intake Structure	Concrete riser and angle iron trash
Condition of Concrete	rack. Under water. Appears good.
Stop Logs and Slots	None observed
Condition of Trash Rack	Good
)	
	ļ
	Į
	,
A-5	!

٠,.

INSPECTION	CHECK LIST
PROJECT Talcott Reservoir Dam	DATE November 17, 1980
PROJECT FEATURE Diversion Dike	NAME
DISCIPLINE	
	NAME
AREA EVALUATED	CONDITION
OUTLET WORKS - INTAKE CHANNEL AND INTAKE STRUCTURE	
a. Approach Channel	Earth channel
Slope Conditions	Good. Grass and brush.
Bottom Conditions	Good
Rock Slides or Falls	None observed
Log Boom	None observed
Debris	None observed
Condition of Concrete Lining	N/A
Drains or Weep Holes	N/A
b. Intake Structure	Concrete riser and angle iron trash
Condition of Concrete	Under water. Appears good.
Stop Logs and Slots	None observed.
Condition of Trash Rack	Good
	}
	, i
A-6	

INSPECTION	CHECK LIST		
PROJECT Talcott Reservoir Dam	DATE November 17, 1980		
PROJECT FEATURE Main Dam	NAME		
DISCIPLINE	NAME		
AREA EVALUATED	CONDITION		
OUTLET WORKS - TRANSITION AND CONDUIT	30 Inch Reinforced Concrete Pipe		
General Condition of Concrete	Good		
Rust or Staining on Concrete	None observed		
Spalling	None observed		
Erosion or Cavitation	None observed		
Cracking	Last downstream pipe joint has minor crack.		
Alignment of Monoliths	Good		
Alignment of Joints	Good		
Numbering of Monoliths	12 pipe sections (from plans)		
	yomp, piga ahaana li Saaraa ah		
	NOTE: Pipe observed from outlet. Water flowing through conduit during inspection.		
	NOTE: There is a vent for the conduit which extends to an outlet at the upstream face of the embankment. Exposed portion of the vent is in good condition.		
	•		

``,

INSPECTION	CHECK LIST		
PROJECT Talcott Reservoir Dam	DATE November 17, 1980		
PROJECT FEATURE Diversion Dike	NAME		
DISCIPLINE	NAME		
AREA EVALUATED	CONDITION		
OUTLET WORKS - TRANSITION AND CONDUIT	30 Inch Reinforced Concrete Pipe		
General Condition of Concrete	Good		
Rust or Staining on Concrete	None observed		
Spalling	None observed		
Erosion or Cavitation	None observed		
Cracking	None observed		
Alignment of Monoliths	Good		
Alignment of Joints	Good		
Numbering of Monoliths	12 pipe sections (from plans)		
	NOTE: Pipe observed from outlet. Water flowing through conduit during inspection. NOTE: There is a vent for the conduit which extends to an outlet at the upstream face of the embankment. Exposed portions of the vent are in good condition. There is an erosion gully (up to 1 foot deep) below the vent apparently caused by a concrete pad at the vent outlet.		
8-A			

٠,

INSPECTION	CHECK LIST
PROJECT Talcott Reservoir Dam	DATE November 17, 1980
PROJECT FEATURE Main Dam	NAME
DISCIPLINE	NAME
AREA EVALUATED	CONDITION
OUTLET WORKS - OUTLET STRUCTURE AND OUTLET CHANNEL	Free Outlet. 30 Inch RCP.
General Condition of Concrete	Good
Rust or Staining	None observed
Spalling	None observed
Erosion or Cavitation	None observed
Visible Reinforcing	None observed
Any Seepage or Efflorescence	Efflorescence at joint crack.
Condition at Joints	Last downstream pipe joint has minor crack.
Drain holes	None observed
Channel	Stilling pool then natural stream.
Loose Rock or Trees Over- hanging Channel	Trees in woods,
Condition of Discharge Channel	Brush and trees along channel.
	,
A-9	

INSPECTION CHECK LIST DATE November 17, 1980 PROJECT Talcott Reservoir Dam PROJECT FEATURE Diversion Dike NAME NAME ____ DISCIPLINE____ AREA EVALUATED CONDITION Free Outlet. 30 Inch Pipe. OUTLET WORKS - OUTLET STRUCTURE AND OUTLET CHANNEL Good General Condition of Concrete None observed Rust or Staining None observed Spalling Erosion or Cavitation None observed None observed Visible Reinforcing None observed Any Seepage or Efflorescence Condition at Joints Good None observed Drain holes Stilling pool then excavated Channel channel approx. 85 feet long. Trees in woods beyond excavated Loose Rock or Trees Overhanging Channel channel. Condition of Discharge Channel Brush and grass in channel. NOTE: Sloughing of riprap and embankment around outlet is occuring.

A-10

a a exemptory

INSPECTION	CHECK LIST
PROJECT Talcott Reservoir Dam	DATE November 17, 1980
PROJECT FEATURE Main Dam	NAME
DISCIPLINE	NAME
AREA EVALUATED	CONDITION
OUTLET WORKS: - SPILLWAY WEIR, APPROACH AND DISCHARGE CHANNFLS	Earth Emergency Spillway
a. Approach Channel	Grassed channel
General Condition	Good
Loose Rock Overhanging Channel	None observed
Trees Overhanging Channel	None observed
Floor of Approach Channel	Grassed
b. Weir	
General Condition of Concrete	NOTE: Weir is a 30 foot long grassed level section between
Rust or Staining	approach and discharge channels.
Spalling	
Any Visible Reinforcing	
Any Seepage or Efflorescence	
Drain Holes	
c. Discharge Channel	Grassed channel.
General Condition	Good
Loose Rock Overhanging Channel	None observed
Trees Overhanging Channel	Trees at sides of channel.
Floor of Channel	Grassed. Several large depressions at downstream end.
Other Obstructions	Downstream end of spillway is a 2H:1V 15 foot high slope containing trees and brush.
	•
į į	
A-11	

•

٠,

1

INSPECTION CHECK LIST					
PROJECT Talcott Reservoir Dam	DATE November 17, 1980				
PROJECT FEATURE Diversion Dike	NAME				
DISCIPLINE	NAME				
AREA EVALUATED	CONDITION				
OUTLET WORKS - SPILLWAY WEIR, APPROACT AND DISCHARGE CHANNELS	Earth Emergency Spillway				
a. Approach Channel	Grassed channel				
General Condition	Good				
Loose Rock Overhanging Channel	None observed				
Trees Overhanging Channel	None observed				
Floor of Approach Channel	Grassed				
b. Weir	NOTE: Weir is a 30 foot long grassed level section between				
General Condition of Concrete	approach and discharge channels.				
Rust or Staining					
Spalling					
Any Visible Reinforcing					
Any Seepage or Efflorescence					
Drain Holes					
c. Discharge Channel	Grassed channel				
General Condition	Good				
Loose Rock Overhanging Channel	None observed				
. Trees Overhanging Channel	None observed				
Floor of Channel	Grassed				
Other Obstructions	Woods at end of channel				
	NOTE: Minor sloughing and damp area noted at base of east spillway embankment.				

A-12

`,,

APPENDIX B

ENGINEERING DATA

1,

APPENDIX B-1

DESIGN, CONSTRUCTION AND MAINTENANCE RECORDS

Location	<u>Items</u>
Mr. Victor J. Galgowski Dam Safety Engineer	• 1. As Built Plans
Water Resources Unit Department of Environmental Protection	2. State Inspection Reports
State Office Building	* 3. Rating Curves
Hartford, Connecticut 06115	4. Flood Emergency Plan
	1. As Built Plans
Mr. Whitney T. Ferguson, Jr. State Conservation Engineer Soil Conservation Service	2. Design Report
U.S. Department of Agriculture Mansfield Professional Park	3. Design Calculations
Storrs, Connecticut 06268	4. Construction Inspection Reports
	 5. Information Storage and Retrieval Form

^{*} Indicates material contained in this Phase I Inspection Report.

DESIGN REPORT

SOUTH ERANCH PARK RIVER WATERSHED SITE NO. 1, TALCOTT RESERVOIR HARTFORD COUNTY, CONNECTICUT

This project is located in Hartford County, in West Hartford, Connecticut. The transparent overlay (sheet 4 of this report) together with the Avon, Connecticut quadrangle published by the U.S. Geological Survey, may be used to locate the site.

This is a class (c) flood prevention project (see Washington Engineering Memorandum SCS-27) and was designed in accordance with Soil Conservation Service criteria.

The project is composed of a diversion channel and four embankments, referred to as:

- 1. Main dam
- 2. Diversion dike
- 3. Dike No. 2
- 4. Low flow barrier

The embankments are earthfill with cutoff trenches to dense glacial material or rock. They contain drainage systems consisting of blanket type embankment drains and foundation toe drains.

The diversion channel diverts the flow from a drainage area of 1.07 square miles into the reservoir area.

The purpose of this project is to reduce flooding downstream by providing temporary storage for the runoff from 1.60 square miles. The temporary storage is released gradually thru two principal spillway systems.

Each principal spillway system utilizes a 3.5' x 4' reinforced concrete riser and a 30-inch reinforced concrete water pipe which has a vented orifice restriction at the inlet to the pipe. A low flow barrier in the channel between the main dam and the diversion dike forces the majority of the base flow thru the auxiliary principal spillway in the diversion dike.

There are two emergency spillways consisting of a 90-foot wide spillway cut thru the right abutment of the diversion dike and a 40-foot wide spillway of compacted fill on the left abutment of the main dam. The emergency spillways will not operate until the runoff exceeds 12 inches from a storm pattern similar to that caused by hurricane "Diane."

The inflow hydrographs used in the design of these structures were developed by the method described in the National Engineering Handbook, Section 4, Hydrology. The flood routing procedure used in the design is given in the National Engineering Handbook, Section 5, Hydraulics.

REFERENCE:

U.S.DEPARTMENT OF AGRICULTURE
SOIL CONSERVATION SERVICE
ENGINEERING & WATERSHED PLANNING UNIT
UPPER DARGY, PENNSYLVANIA

DRAWING NO.
CM-418-R
SHEET 1 OF 5
DATE 3/25/63

DESIGN REPORT

The following table gives the results of the hydrologic and hydraulic determinations:

Which De-	Surface Area Acres	Runoff in Inches	Peak Inflow c.f.s.	Peak Outflow c.f.s.	Elev. of Maximum Stage	Storage in AcFt.	Element of Structure Determined by Maximum Stage
50-year sediment accumula- tion	24.20	>.08	**	-	435.0	>6.7	Crest of riser
Storm "Diane" 100-year frequency storm moisture condition	65.7	12.0	1860	129	452.5	82 6¹	Crest of emergency spillway
1.75x6-hour point rain- fall moistur condition II	re	16.3 ²	4870	1775	455.4	10 15¹	Design high water
2.5x6-hour point rain- fall moistur condition II	-	2 5.3²		3125 11-135 4706	456.7	1115 ¹	Check top of dam
2.6' free- board	-	-	••••••••••••••••••••••••••••••••••••••	4736	458.0	1205 ¹	Top of dam

Runoff from total drainage area.

The time to empty 100 percent of the flood storage is 5.5 days.

The geology report and Soil Mechanics Laboratory report were used to determine the adequacy of the design. Copies of these reports are attached.

The following publications were used in the design of this dam:

NE Handbook No. 5, Hydraulics NE Handbook No. 4, Hydrology NE Handbook No. 6, Structural Design Technical Releases Nos. 2, 5 and 10

DRAWING NO. REFERENCE: U.S.DEPARTMENT OF AGRICULTURE CN-418-R SOIL CONSERVATION SERVICE ENGINEERING & WATERSHED PLANNING UNIT SHEET 2 OF 5 UPPER DARBY, PENNSYLVANIA DATE 3/25/63

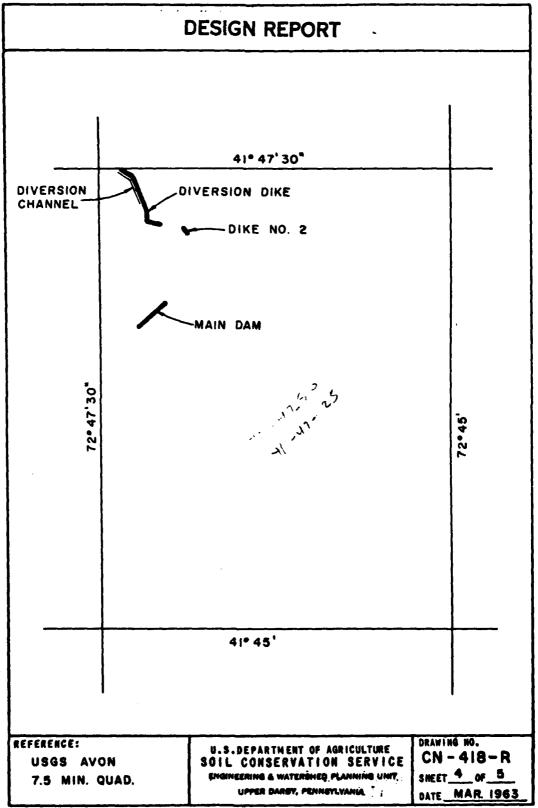
DESIGN REPORT

Copies of these publications may be obtained from Mr.W. Paul Tedrow State Conservationist, USDA, Soil Conservation Service, Storrs Commerciant

Concurred:

Gerald R. Omen Design Engineer

T. R. Wire State Conservation Engineer


Vincent Hokever
Hydrologist


Robert F. Former Geologist

REFERENCE:

U.S.DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE ENGINEERING & WATERGHED PLANNING UNIT UPPER DARBY, PENNSYLVANIA DRAWING NO.

SHEET_3_OF_5_ DATE_3/25/63___

NETSC TEMPORARY FORM 6-13-75	INFORMATION STORAGE	AND RETRIEVAL	- DAMS PLANNED AND CONSTP	UCTED BY SCS	<u>CT-17</u>
IDENTIFICATION AND LOCATION		25.	SUBMERGED SEDIMENT STORAGE	2.6	SITE 10
1. Site 1 Talcott STRUCTURE DESIGNATION (NAME ON		_ 26.	AFRATED SEDIMENT STORAGE	3	4(
Park River-Conn.	River	27.	MUNICIPAL AND INDUSTRIAL S	MATER STORAGE	A(
South Branch-Park	River	28.	RECREATION WATER STORAGE		M
WATERSHED (NAME OR UNHAMED)		29.	FISH AND WILDLIFE STORAGE		A(
4. Connecticut STATE (NAME)		_ 30.	IRRIGATION STORAGE		AC. F
5. Hartford		31.	OTHER BENEFICIAL STORAGE		AC. F
COUNTY (NAME)		32.	TOTAL FLOOD STORAGE	820	AC. 1
6. West Hartford TOWNSHIP (NAME)		_ 33.	TEMPORARY EMERGENCY SPILLY OF LOWEST EMERGENCY SPILLY 379	MAY AND TOP OF SET	EEN CREST TTLED FILL) AC. >
CONGRESSIONAL DISTRICT (NUMBER)		- 34.	SURFACE AREA OF HORMAL POO		
s. Central Connectic	ut Lowlands	3	LENGTH OF SHORE LINE OF NO		AC.
PHYSIOGRAPHIC AREA I/ (KANE)			MAXIMUM DEPTH OF NORMAL PO		FT.
AUTHORIZATION (SP. FP. RCED. CO.	-01, PI(OT)				
10. 41 47 2 LATITUDE (DEGREES, MINUTES, SECO	5 (308)	37.	ICIPAL SPILLWAY FEATURES PRINCIPAL SPILLWAY TYPE (C	IRCLE APPLICABLE)) -
	0	. `	FIPE MONOLITHIC, OPEN CON	-	
LONGITUDE (DEGREES, HINUTES, SEC 458.0	JUNUS)		IS THERE COLD WATER RELEAS		
ELEVATION OF TOP OF DAN (SETTLE)) गा ः मंश रहा ।	. 39.	HUMBER OF STAGES		or 2)
13. DATE PLAN APPROVED 1	962	40.	LOW STAGE CAPACITY (AT HIGH STAGE PRINCIPAL S	PILLWAY CREST)	CFS
14. DATE OF MOST RECENT SUPPLEMENT (LEAVE BLANK IF NOT SUPPLEMENTE)		41.	PRINCIPAL SPILLWAY CAPACIT (AT LOWEST EMERSENCY SPILL		CFS
15. DATE CONSTRUCTION COMPLETED (LEAVE BLANK IF NOT COMPLETED)	1964	PRI	ICIPAL SPILLWAY CONDUIT FEA	TURES	
16. TYPE OF DAM (CIRCLE APPLICABLE) EARTH, ROCK, CONCRETE, OTHER	•		MAJOR PORTION OF CONDUIT I		
17. PLANNED PHIRPOSES (CIRCLE ALL APP FLOOD PREVENTION) RECREATION, FI	LICABLE) - ISH & WILDLIFE,	43.	TYPE OF ENERGY DISSIPATOR IMPACT BASIN, SAF, PLUNGE	COLRICLE APPLICABLE POOL HOME, OTHER	E) -
MUNICIPAL AND INDUSTRIAL MATER S MAYIGATION, HYDRO-ELECTRIC, SEDI LOW FLOW AUGMENTATION, OTHER	SUPPLY, IRRIGATION, IMENT CONTROL,	44.	COMPUTE SIZE 2.5 (CLARGEST COMOUTT THROUGH DE (HEIGHT AND MIDTH IN FT. I NUMBER OF BARRELS IF MULT	AM) (DIAM, IN FT. F MONOLITHIC) ALS	TF ROURD) 60 SHM
18. HAZARD CLASS (A, B, OR C)					
19. EARTHQUAKE ZONE 2/ (0, 1, 2, 3,	or 4)		INLET TYPE (CIRCLE APPLICA COVERED TOP, HOOD INLET, H	ETAL-OPEN TOP, OT	HER TOWN
SIZE AND CAPACITY		46.	HEIGHT OF RISER	4.0	n.
20. DRAINAGE AREA UNCONTROLLED 1 (UPSTREAM FROM STRUCTURE)	030ac.	•	(FROM TOP OF FLOOR TO TOP	OF ANTI-VORTER)	
21. DRAINAGE AREA CONTROLLED (UPSTREAM FROM STRUCTURE)	AC.		GENCY SPILLWAY FEATURES PRIMARY EMERGENCY SPILLWAY CLOSED COMPULE OFFI	TYPE (CIRCLE APP	LICABLE)
22. MAXIMUM FILL HEIGHT (FROM LOW POINT ON CENTERINE, B TO TOP OF SETTLED FILL.)			CLOSED COMDUIT, OPEN CONCR VEGETATED, SOFT ROCK, MARD PRIMARY EMERGENCY SPILLWAY	ROCK 3/ WIOTH 130	
23. CREST LENGTH OF DAM (ALONG CENTE	Dam 1300		(CREST LENGTH FOR CONCRETE)	
	Dike 3125	• • • • • • • • • • • • • • • • • • • •	PERCENT CHANCE OF USE OF PI	RIMARY EMERGENCY	SPICENAY

- \underline{y} M. M. Fenneman, 1938, Physiography of Eastern United States, McGraw Hill Book Co., New York, N. Y.
- 2/ See TSC Technical Note Engineering UD-22.
- 3 Soft Rock Rock that will erode when subjected to flowing water.

 Hard Rock Rock that is resistant to erosion due to flowing water.

5.BF (1.1)

EMEPGENCY SPILLWAY FEATURES (CONT'D.)	61. FEDERAL SHARE OF LAND HIGHTS COST S
59. 4906 CFS CESSICITY OF PRIMARY EMERGENCY SPILLWAY (NMEN POOL IS AT TOP OF DAM)	62. CONSTRUCTION COST \$ 277,617 (ODES NOT INCLUDE LAND PIGHTS, ENGINEEPING AND PROJECT ADMINISTRATION)
51. 5.5 STETEPENCE IN ELEVATION BETWEEN CREST OF PRIMARY EMERGENCY SPILLMAY AND TOP OF DAM	63. FEDERAL SHARE OF CONSTRUCTION 100 %
12 SCOODARY EMERGENCY SPILLWAY IS (CIRCLE APPLICABLE) 10151 EARTH, VEGETATED, SOFT ROCK, HARD POCK 3/	COMPLETED STRUCTURE 64. FINAL CONSTRUCTION COST \$ 256,000
53. WIDTH OF SECONDARY EMERGENCY SPILLWAYFT_	
EL CAPACITY OF SECONDARY ENERGENCY CFS SPILLMAY (WHEN POOL IS AT TOP OF DAN)	ADDITIONAL DATA REQUIRED FOR U.S. REGISTEP OF DAMS LEAVE BLANK FOR DAMS LESS THAN 33 FT. IN HETCHY)
55. FT.	65. Talcott
OFFERENCE IN ELEVATION BETWEEN CREST OF SECONDARY EMERGENCY SPILLWAY AND TOP OF DAM	66. NAME OF RESERVOIR
OWIT ITEMS 56-59 IF DRAINAGE AREA IS LESS THAN 10 SQUARE MILES	67. NEAREST CITY OR TOWN West Hartford
55. BILK LENGTH OF SOFT ROCK 3/ EARTH FT. OR VEGETATED SPILLWAY (SEE TR-52 FOR DEFINITION)	68. TYPE OF DAM IF CONCRETE (CIRCLE APPLICABLE) BUTTRESS, ARCH, MULTI-ARCH
57. PT OF SURFACE MATERIAL IN EARTH OR VEGETATED	69. IS DISCHARGE THROUGH PRINCIPAL SPILLWAY CONTROLLED BY GATES?NO
SPILLMAY (PREDOMINANT MATERIAL AT OR MEAR SURFACE BEFORE TOP SOILING)	70. ESTIMATED COMPLETION DATE 1964 (IF UNDER CONSTRUCTION)
USES CLASSIFICATION OF ABOVE MATERIAL	71. NAMER State of Connecticut
59 AC. FT.	72. ENGINEERING BY Soil Conservation Service
VOLUME OF OUTFLOW THROUGH VEGETATED OR EARTH SPILLWAY (DURING PASSAGE OF FREEBOARD HYDROGRAPH)	73. CONSTRUCTION BY Mark Construction Co. (CONSTRUCTION CONTRACTOR)
COST DATA	74. ABOVE DATA FURNISHED BY Joseph Polulech
HOPE PLAN 60. LAND RIGHTS COST \$ 96,089	75. DATE DATA FURNISHED 11/75
76. REMARKS * Structure designed with	
One in the dam and one :	in the dike.
	- one 90' B.W. and one 40' B.W.

3/ Soft Pock - Rock that will erode when subjected to flowing water. Hard Roch - Rock that is resistant to erosion due to flowing water.

_B-8

*-..

A SALE MANAGEMENT SERVICE

FLOOD EMERGENCY PLAN PP & CONN. DEPT. ENVIR. PROT.

will commence. T : pump and hoses are stored in Building No. 17.

- d. All gates will be inspected to insure proper closing without clogging by debris.
- e. Screen well house openings will be closed. The closure will consist of
 - (i) stoplogging the one entrance door into the structure,
 - (ii) closing the maintenance trough opening with the steel plate mounted outside the building, and
 - (iii) the sluice gate on the opening under the well house floor will be secured.

The flood works are on the property of Chase Brass and Cooper Co., Inc., and AMTRAK. Chase Brass has agreed to assist in maintaining and operating these works. The individuals assigned to these responsibilities from Chase Brass are as follows:

L. Conard

756-9448

B. Kleinselbeck

754-8229

(A guard is on duty 24 hours at the plant.)

- 5. Soil Conservation Service Flood (ontrol Structures: The dams listed below are dry flood control dams which are owned and operated by the State of Connecticut. Their sole purpose is to impound and slowly release flood water. In order to properly operate, it is imperative the culverts be clear and free of debris. For this reason, upon notification of a watch the structures should be inspected to insure clear outlets. During a warning the dams will be inspected at approximately 2 3 hour intervals. Inspections should consist of
 - a. estimating the height of water,
 - b. looking for piping failures, sand boils, or other abnormal leakage, especially in the vicinity of the culvert outlets, and
 - c. looking for the development of slope sloughing or other structural problems.

Findings of each inspection should be reported immediately to the F.E.O.C.

FLOOD EMERGENCY PLAN PF 7 CONN. DEPT. ENVIR PROT.

Grow Assignments:

Moonfield Reservoir, Site 3. Tunds Ave. Bloomfield

Moonfield Reservoir, Site 3a, Tunxis Ave., Moonfield

Mue Hills Reservoir, Filley Street, Elocafield

Wintonbury Reservoir, Filley Street, Moomfield

Coldspring Reservoir, Simsbury Road, Bloomfield

Crew:	Home	Office
Marilyn Aarrestad	658-5593	242-1158
Thomas Noonan	247-1847	242-1158
Calvin Innes	653-2996	242-1158

Thousand Acre Swamp, New Marlboro, Massachusetts

Westside Reservoir, Westside Raod, Norfolk

Norfolk Reservoir, Route 44, Norfolk

Wood Creek Reservoir, Route 272, Norfolk

Whiting River Reservoir, Canaan Valley Road, North Canaan

Crew:

Stanley Civco

542-5423

SAME

Roaring Brook, Unionville

South Reservoir, Farmington Avenue, West Hartford

Burnt Hill Reservoir, Tunxis Road, West Hartford

Bugbee Reservoir, Hickory Lane, West Hartford

Talcott Reservoir, Route 44, West Hartford

Crew:

Robert Corbidge	673 –3 955	677-1819
Phillip Johnson	673-2943	677-1819
Ransom Watson	677-1819	677-1819

^{6.} Highland Lake Flood Control Works: As part of the Flood works for Winsted, the dam at the north end of Highland Lake can be sandbagged prior to flooding to increase the storage capacity

APPENDIX B-2

COPIES OF PAST INSPECTION REPORTS

In zoa Ny	intoried INVENTORY DATA
j ey data	MAIN DAM 12
	Name of Dam or Pond IUCOC KESEVOU SUE
	Code No. WH 13
	Nearest Street Location abony WE.
	TOWN West Hurtford LAT. 410 46.7
	U.S.G.S. Quad. AVO? LONG. 72°47.2
	Name of Stream unnamed trib of Trout Brook
•	owner State of Conn.
	Address Dept. of agriculture & Natural Desource
•	State Office Bldg.
	threford 1
	Pond Used For 660d control DA 1.6/5M
-	Dimensions of Pond: Width Length Area 24
:	Total Length of Dam 1240 Length of Spillway #2'
~/	Location of Spillway CENTER
1966	Height of Pond Above Stream Bed 13.5
•	Height of Embankment Above Spillway 5.5
	Type of Spillway Construction RISER + RCP
	Type of Bike Construction EUCh
	Downstream Conditions
	Summary of File Data
	Remarks D. Ai. Eric 1032 A
	B-12

. .

Invantoried By	SUPERVICTON OF DATE INVENTORY DATA	H.13
Date	DIVERSION DIKE	· Etter
tiame of Dam o	or Pond TALCOTT P.F.S. D.	9M ≠/
Code No.		
Nearest Strae	et Location <u>P7. 44</u>	
Town W.	HTFD	LAT. 41047.2
່ ບ.s.g.s. Ç	Quad. AVON	LONG. 72°47.1
•	tream Vynamed Tr. 6 st T	•
Owner D. F.	P	•
Address		•
—		•
Pond Used For	FLOOD CONTROL	DA 1.60561
Dimensions of	Pond: Width Length	Area 110
Total Length	of Dam 300c' Length of	Spillway
	Spillway <u>EAST</u> FILE	
leight of Por	nd Above Stream Bed 13.5	
Keight of Emb	pankment Above Spillway 5.5	
Type of Spill	way Construction RISEA 4 RC	ρ
Type of Dika	Construction EANTII	
Downstream Co	onditions	
Summary of Fi	ile Data	
Renarks		
		

The second secon

APPENDIX B-3

RECORD DRAWINGS AND SKETCHES

SOUTH BRANCH PARK RIVER WATERSHED PR

FLOODWATER RETARDING SITE NO I TALCOTT RESERVOIR

DRAINAGE AREA 1032 ACRES
TOTAL STORAGE
TO EMERGENCY SPILLWAY CREST

WATER SURFACE AREA 24.2 ACRES

HEIGHT OF DAM 27 FEET

VOLUME OF FILL 132,050 CUBIC YARDS

BUILT UNDER THE WATERSHED PROTECTION AND FLOOD PREVENTION ACT

BY

COMMISSIONER OF AGRICULTURE AND NATURAL RESOURCES
STATE OF CONNECTICUT

WITH THE ASSISTANCE OF THE SOIL CONSERVATION SERVICE

OF THE

UNITED STATES DEPARTMENT OF AGRICULTURE

1963

INDEX

SHEET ! - COVER SHEET

SHEET 2 - PLAN OF STORAGE AREAS - DIVERSION DIKE

SHEET 3 - PLAN OF STORAGE AREAS - MAIN DAM

SHEET 4 - PLAN OF DIVERSION DIKE & CHANNEL

SHEET 5 - PLAN OF DAM & DIKE NO I

SHEET & - PROFILE - DIVERSION CHANNEL

SHEET 7 - PROFILES

SHEET 8 - PROFILES

SUFET & ... COMPAGE AMAIN DETAILS -DIVERSION DIKE

DE BYTTOE BROWNING TALLS - DINCES

R WATERSHED PROJECT

ING SITE NO I

1032 ACRES
820 ACRE FT

24.2 ACRES

27 FEET

132,050 CUBIC YARDS

HED PROTECTION AND TION ACT

AND NATURAL RESOURCES
IECTICUT

NCE OF THE

N SERVICE

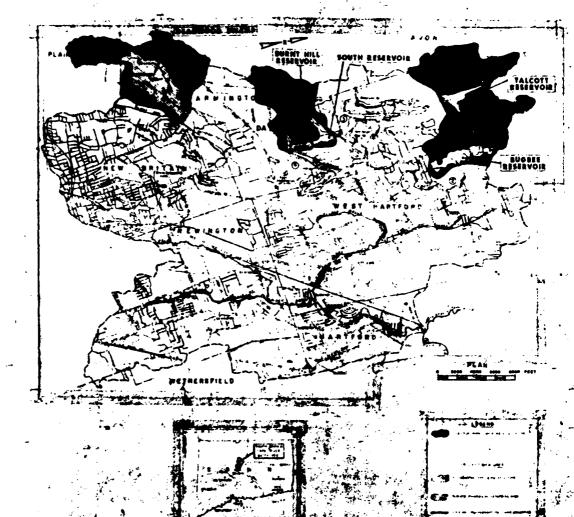
NT OF AGRICULTURE

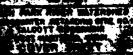
AREAS - DIVERSION DIKE

AREAS - MAIN DAM

N DIKE & CHANNEL

.... NO 1

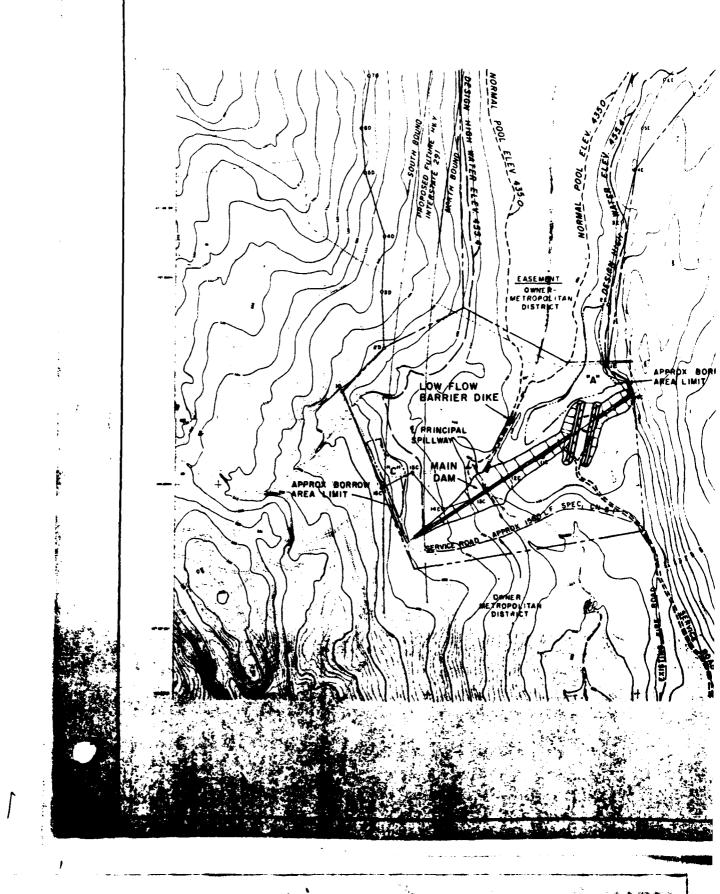

N CHANNEL

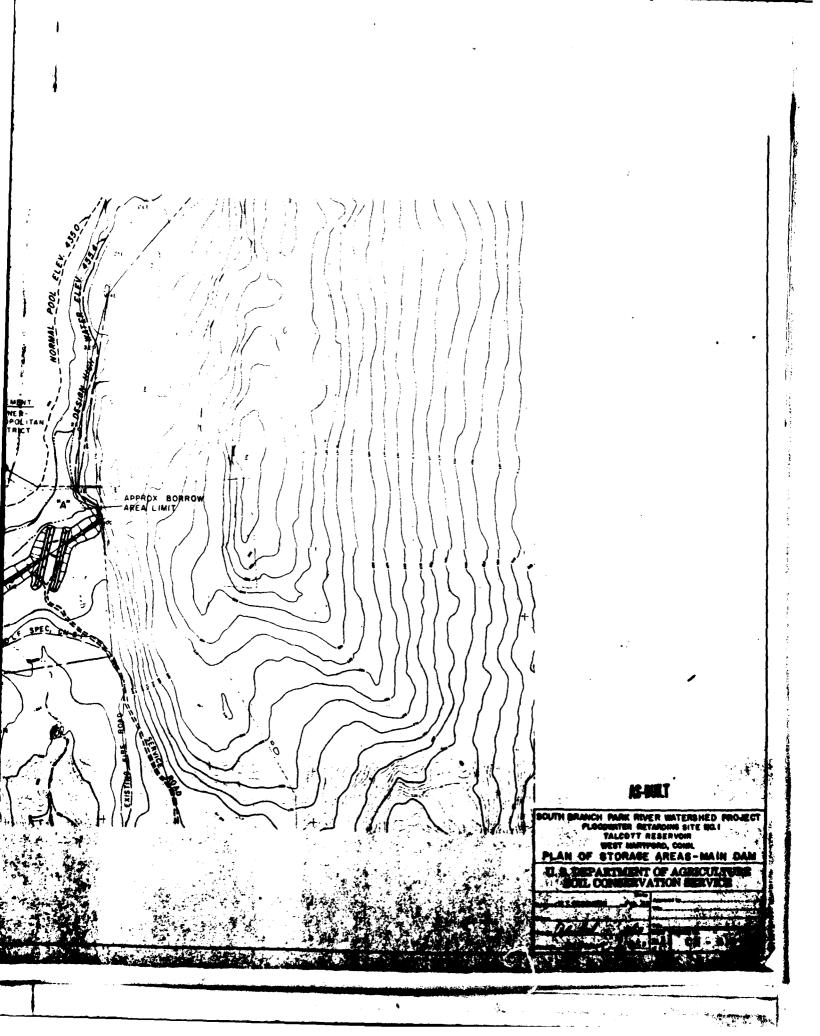

ZANS -DIVERSION DIKE

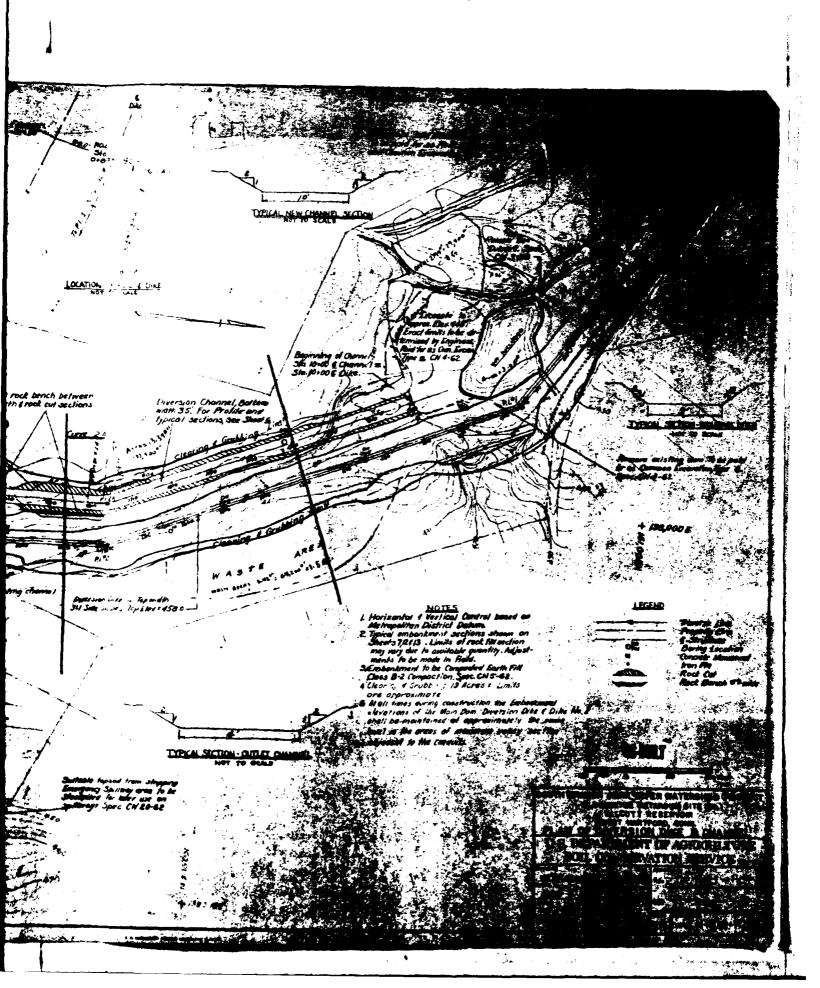
PARS -DINES

MA - 34 M.

Mapping Wilchest - MAIN BOM

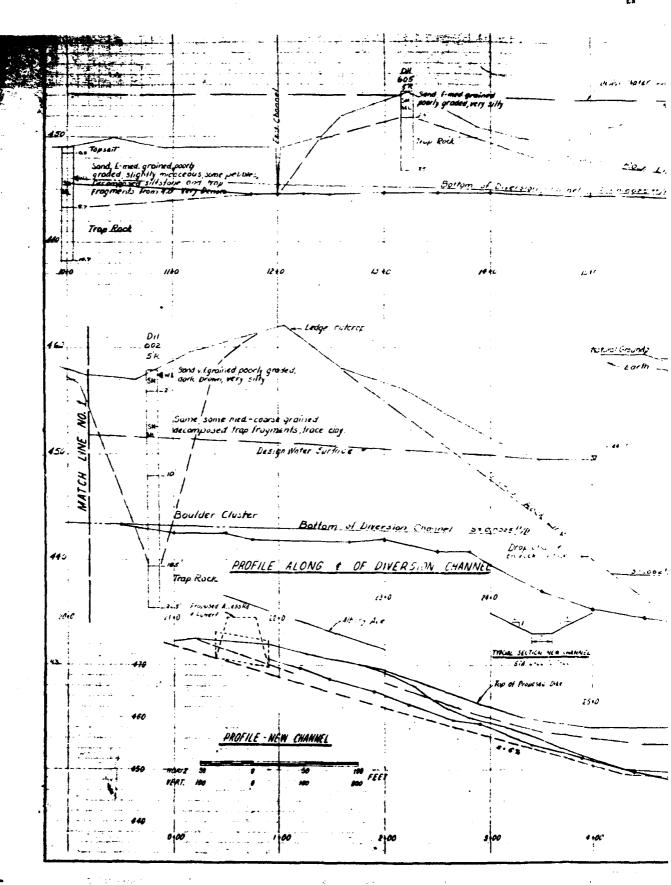






i

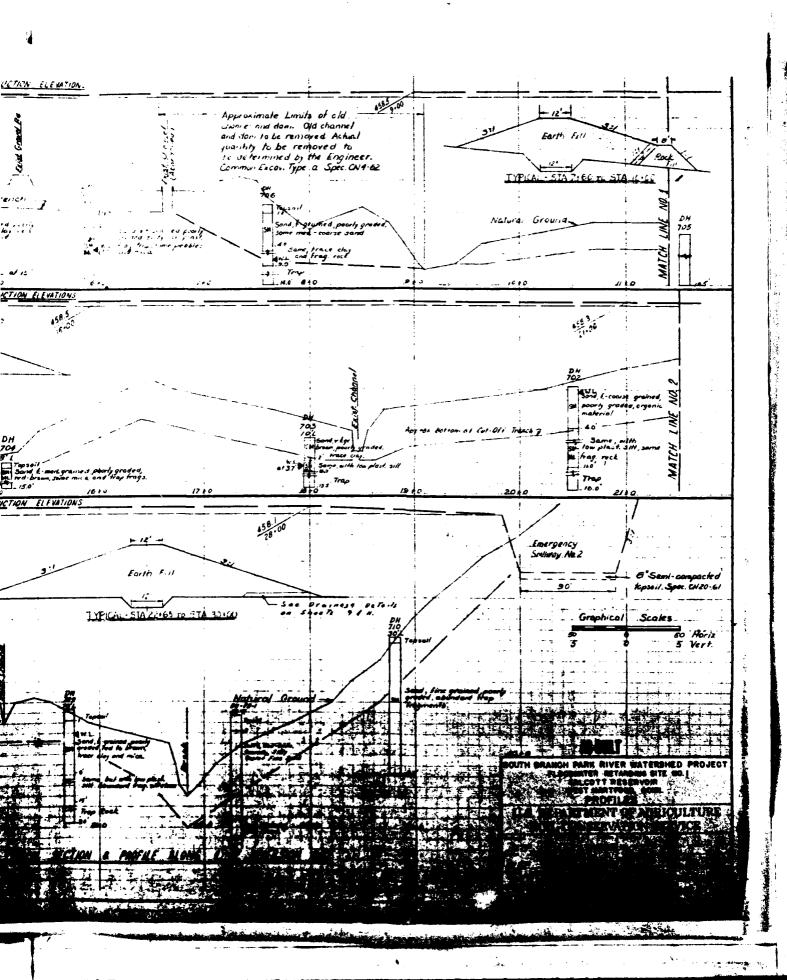
EMERGENCY SPILLWAY NO. 2 SOUTH BRANCH PARK RIVER WATERSHED PROJECT
FLOODWATER RETAIDING SITE NO.!
TALCOTT RESERVOIR
WEST MARTFORD, CONN.
PLAN OF STORAGE AREAS - DIVERSION DIKE U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE



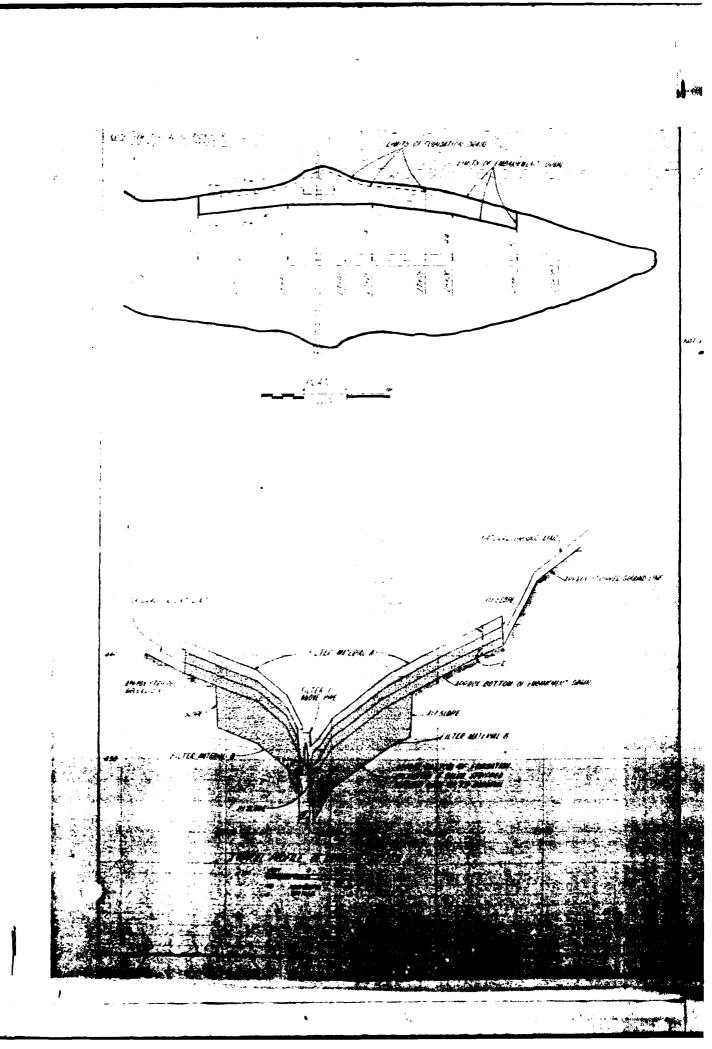
. . .

Thorerse Sto. 11-C PRINC SEWY · I TO SCALE *.*

•

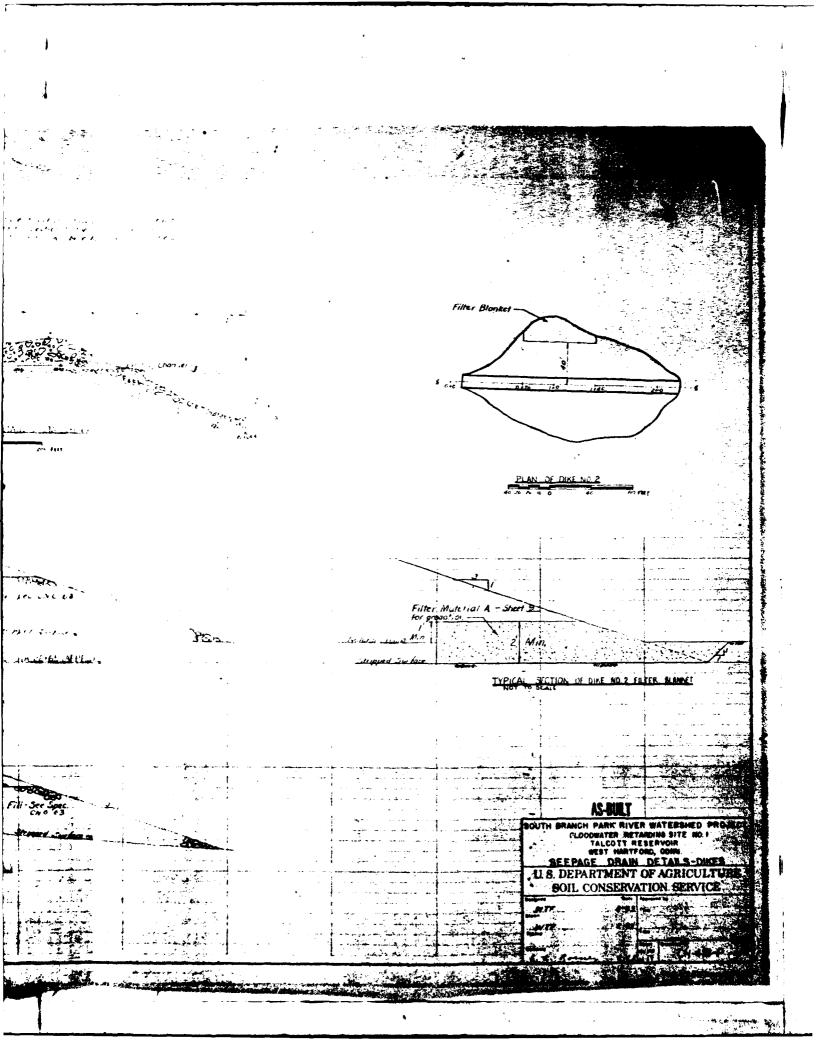

,

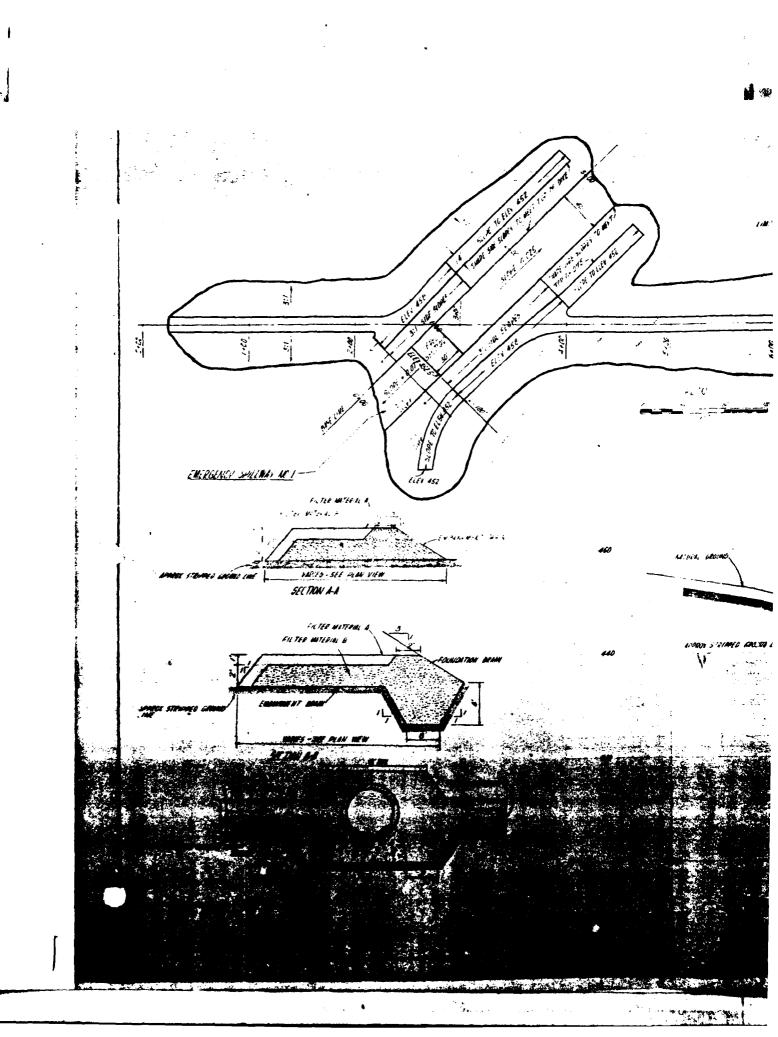
.

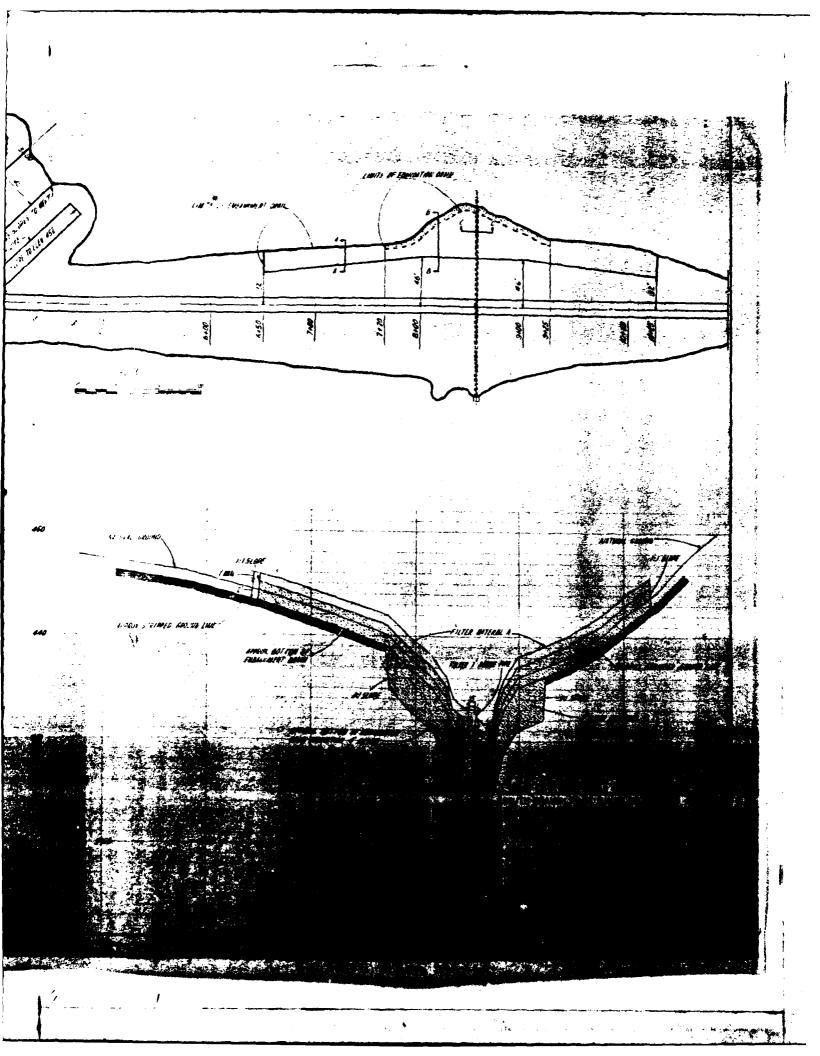

and the comment

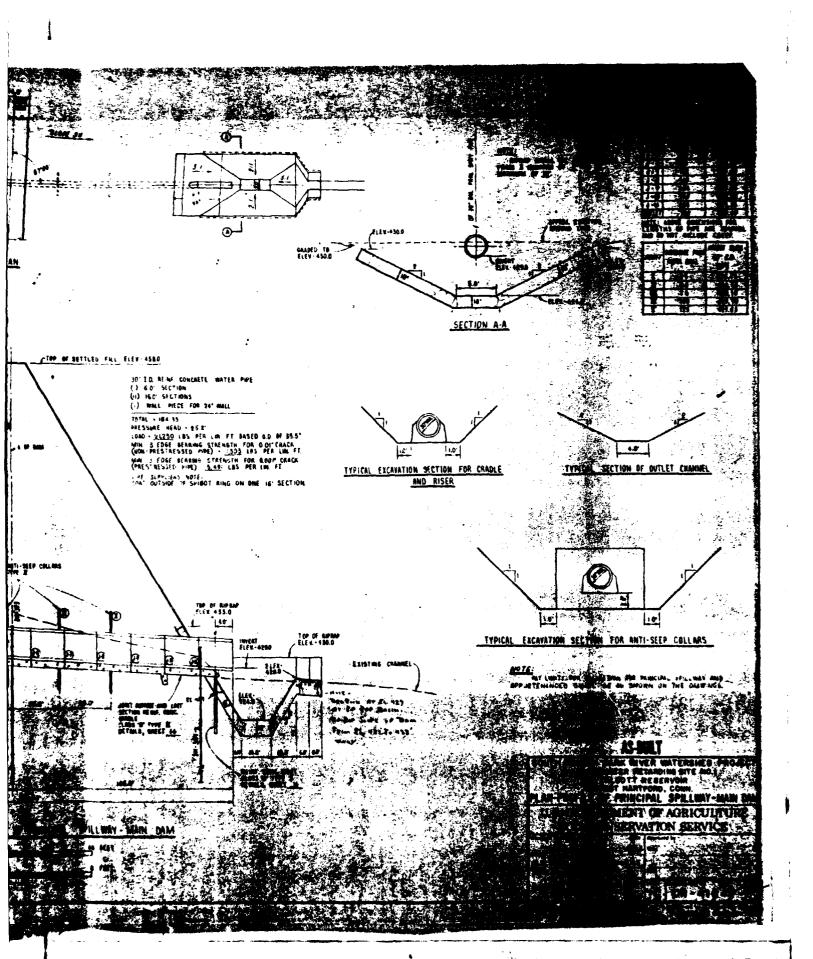
was some server 3400 sta tond, I med grained, nowly graded, some pebbles, gravels, and de conpubed mp rock Trup Rock Buersion Come Section in Earth Cu A. B. Comente TYPICAL CHANNEL SECTION
NOT TO SCALE
LIB. 10-UE TU 20-30 DH 16.81 Organic Textson L celi general Liner, some see soone sand less tense from L Soud v. I grand party sound grand sizes and roy not ragnestal trap SELTICH NER CHANGE Trop Rock 25.0 27.0 28.0 SOUTH BRANCH PARK RIVER WATERSHED PROJECT
FLOODMATER RETARDING SITE NO. 1
TALCOTT RESERVOIR
WEST MARTFORD, COMM.
PROFILE - DIVERSION CHANNEL U.S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE MIF WTF 6 .OC

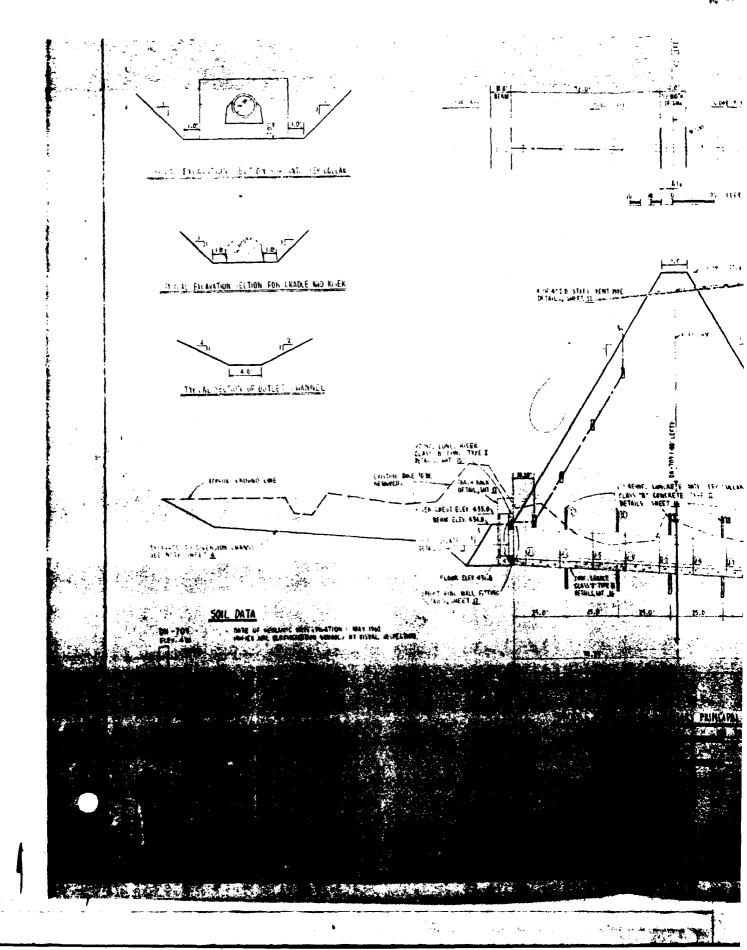
> 7 ii. 14.

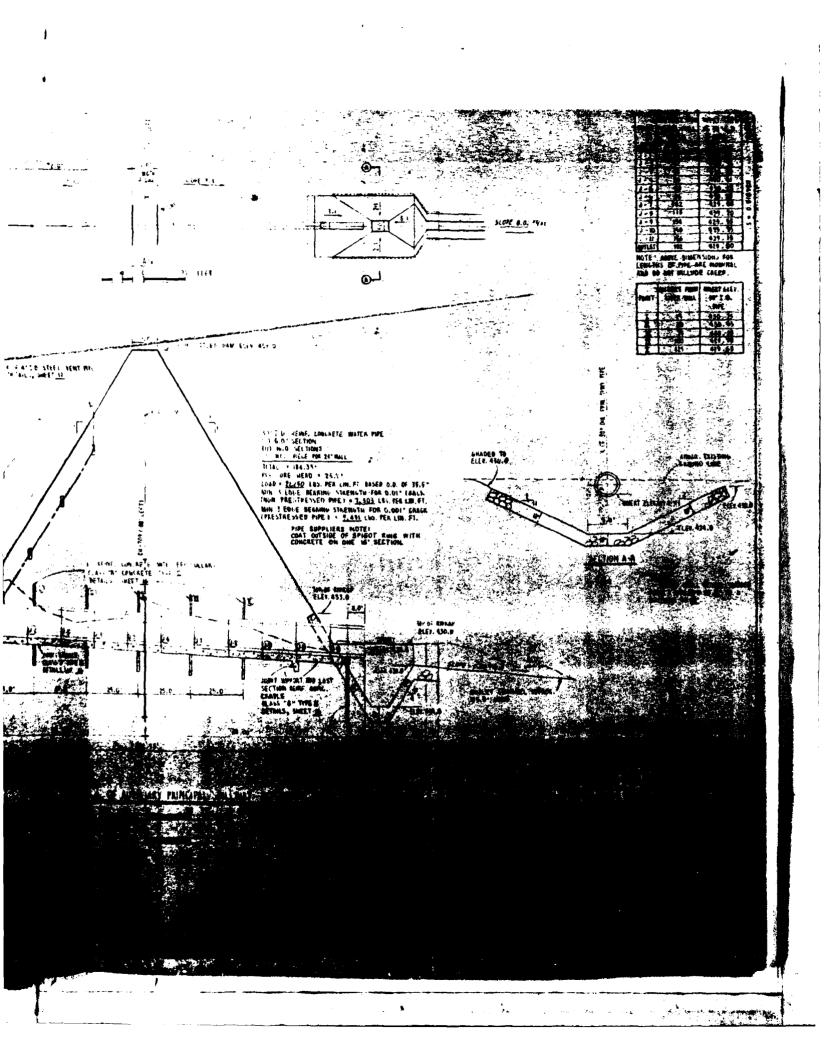


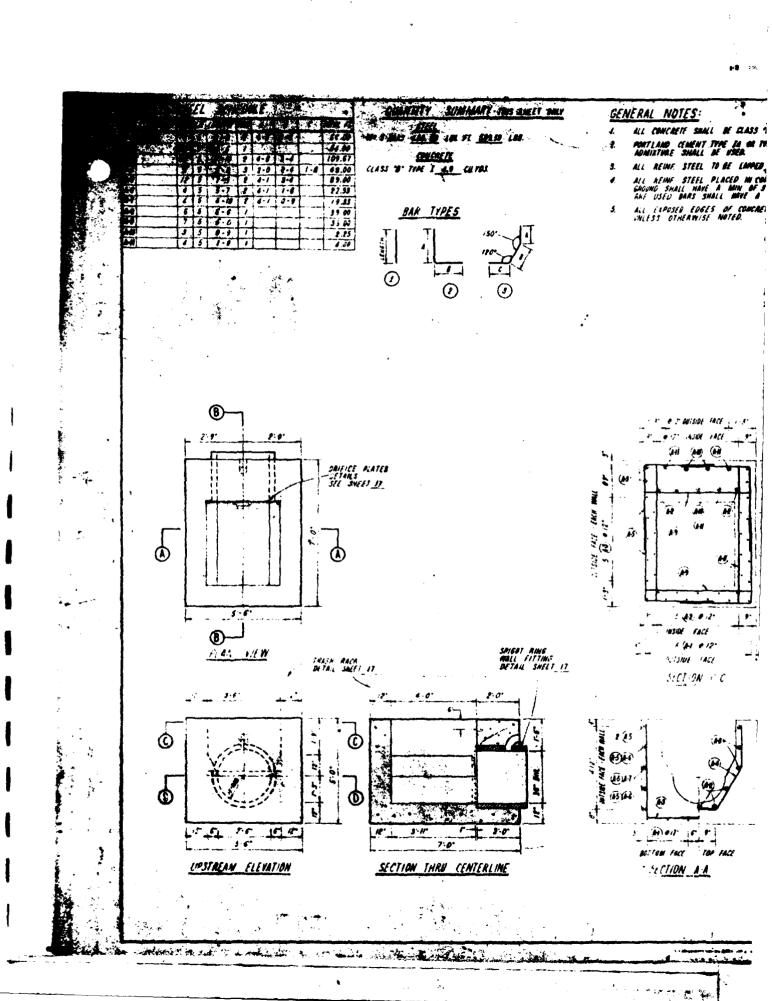

N = 10 to to 1 THE Some years and brown stone mica, withouth gradea. signity posts. * Sum is a course union and some decomposed sitistone and trap rock tragingents. some peubles sitt MATE Stone GAU tran rock tragniebts The Congruence of a more med. Typing bufforn Of Opt Off mench to the month of the manner manager or advant. I will use the second of the try next. Something Execution Type & open Off & 62 He obtained to peak a mit annihilate, with tested top and the second t 160

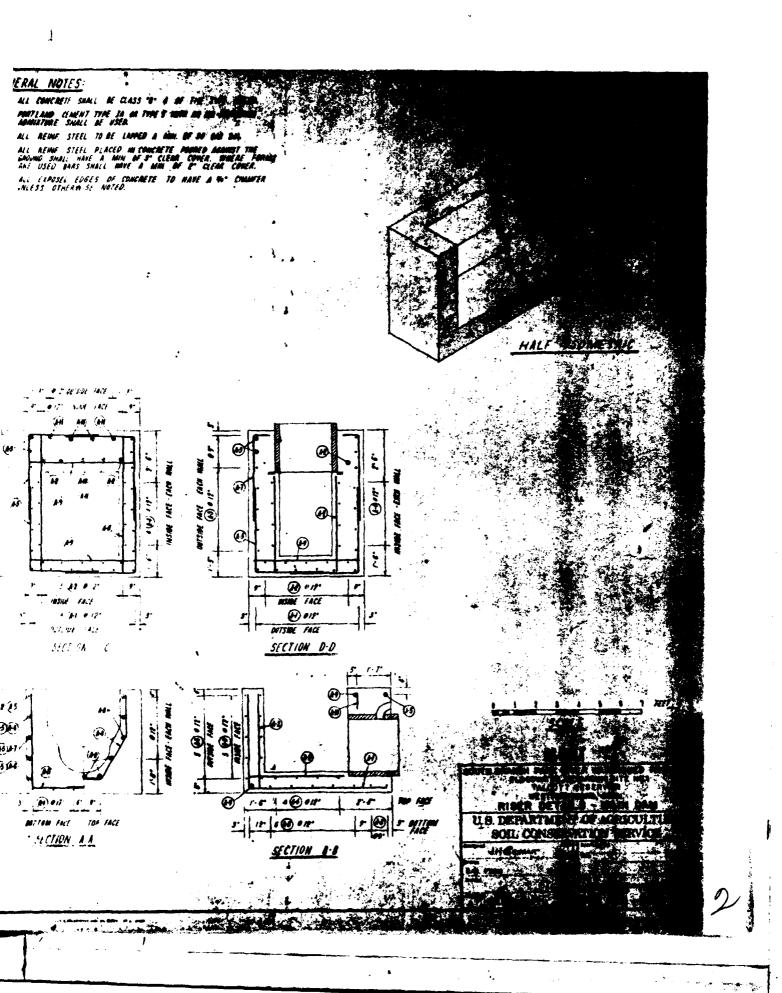


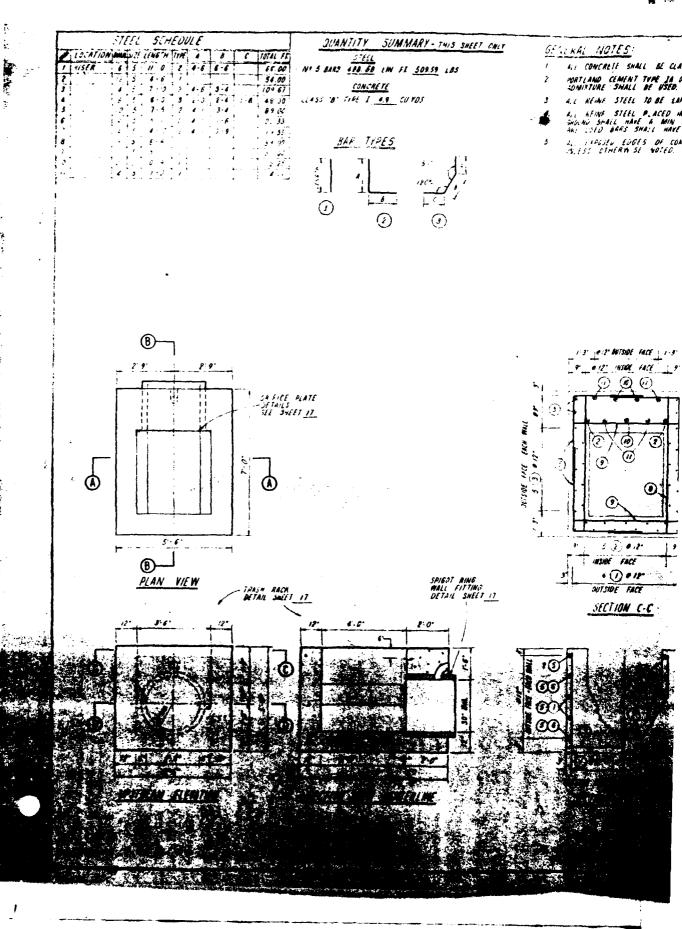

1 - 2 10 M - 1 8 2 2 2 1 7 145 76 514 5155 OPETOEN OUT TO FORE EXAMPLET Land of the Advance of the formation of the second of the

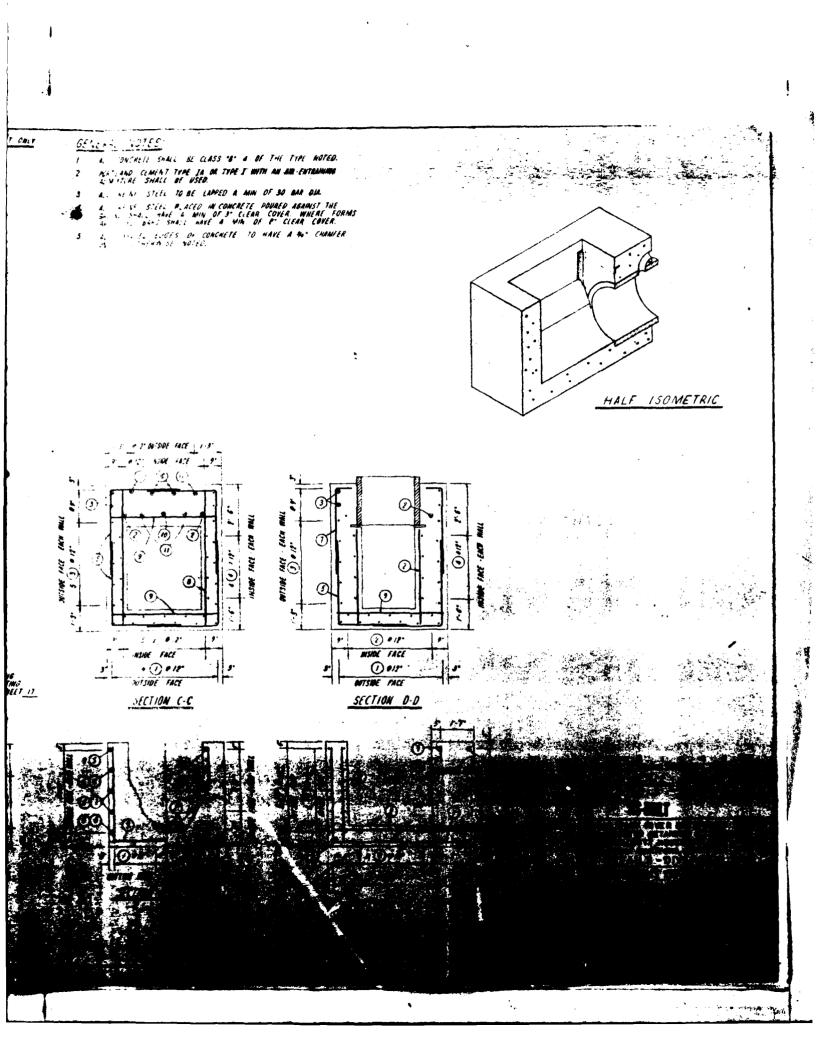

NOTE: He will be recorded to the control of the con L. Oak of ROCA FALL I to be a sub-freeze to the SIA to be Impervious Ful, Couston Filler Mor A Ser Smell with the same Spec CN 3-62 Dr. Mark Sugar . horapan or armse outerral , NOT TO SLALE

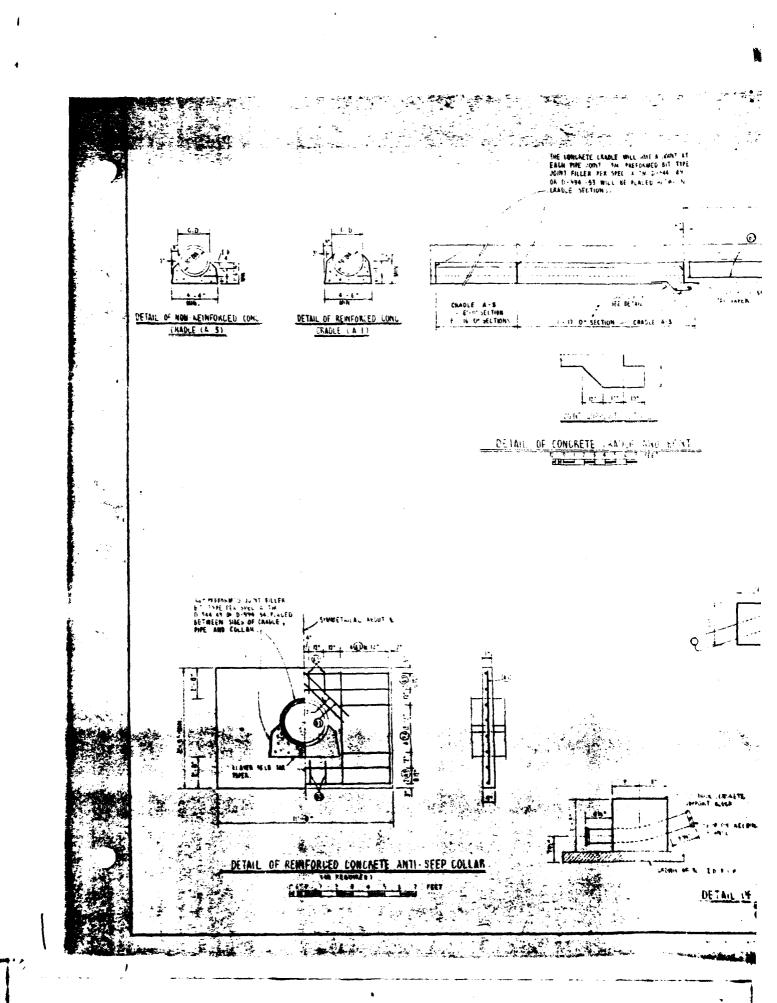




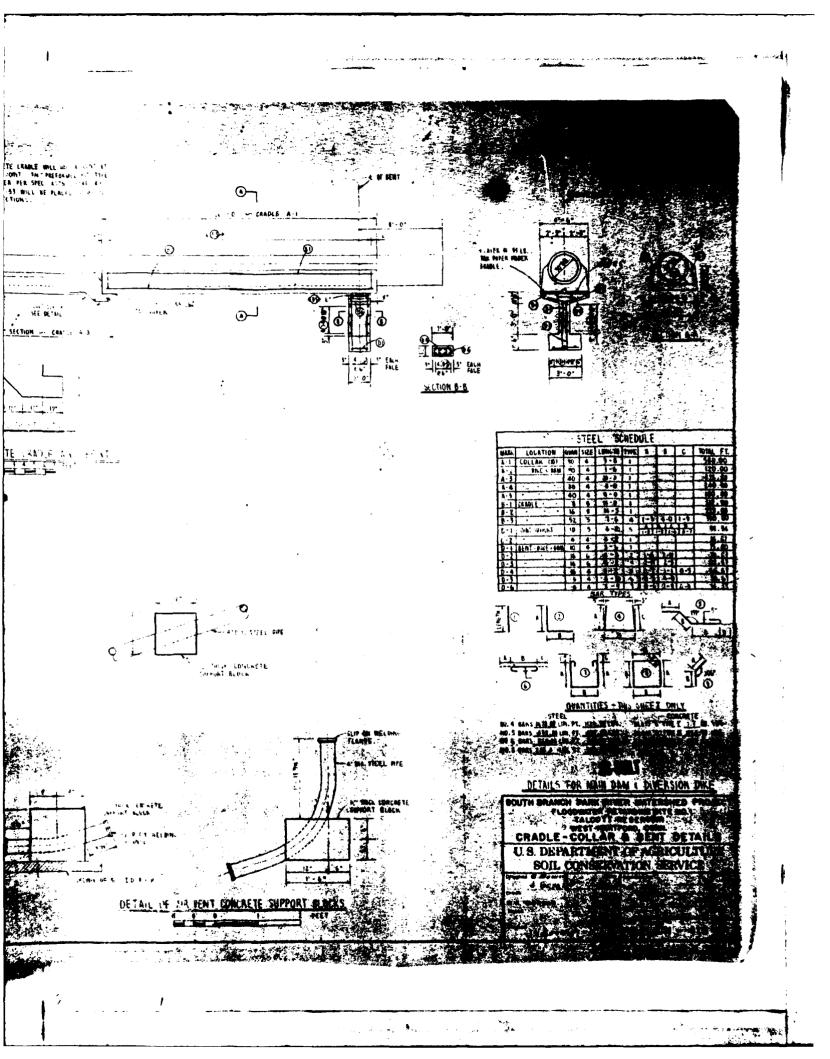


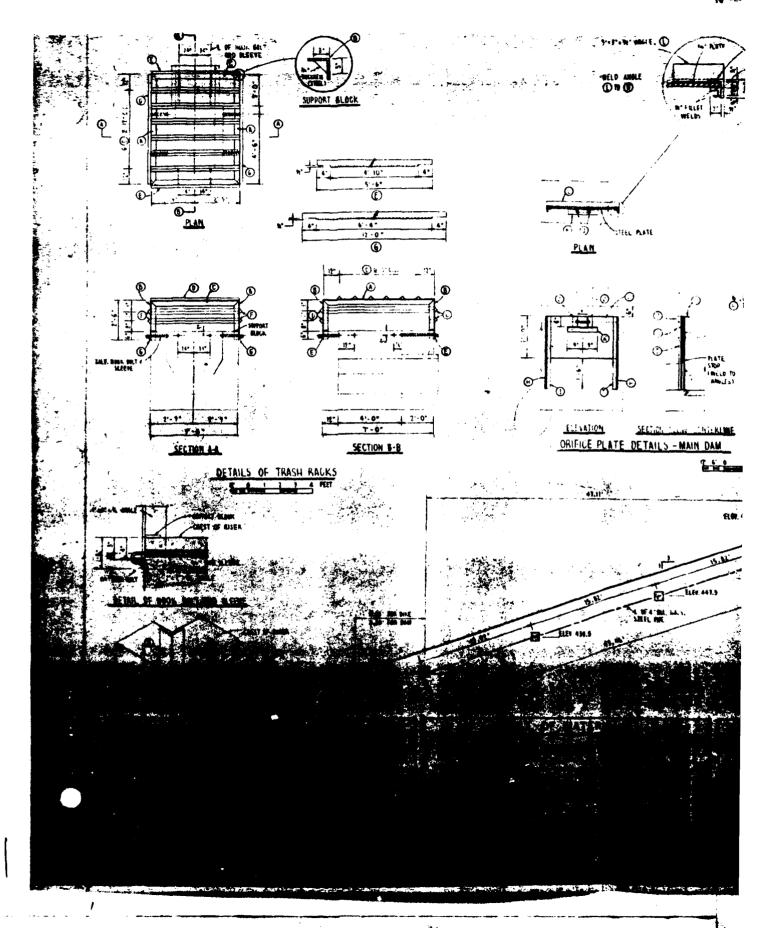


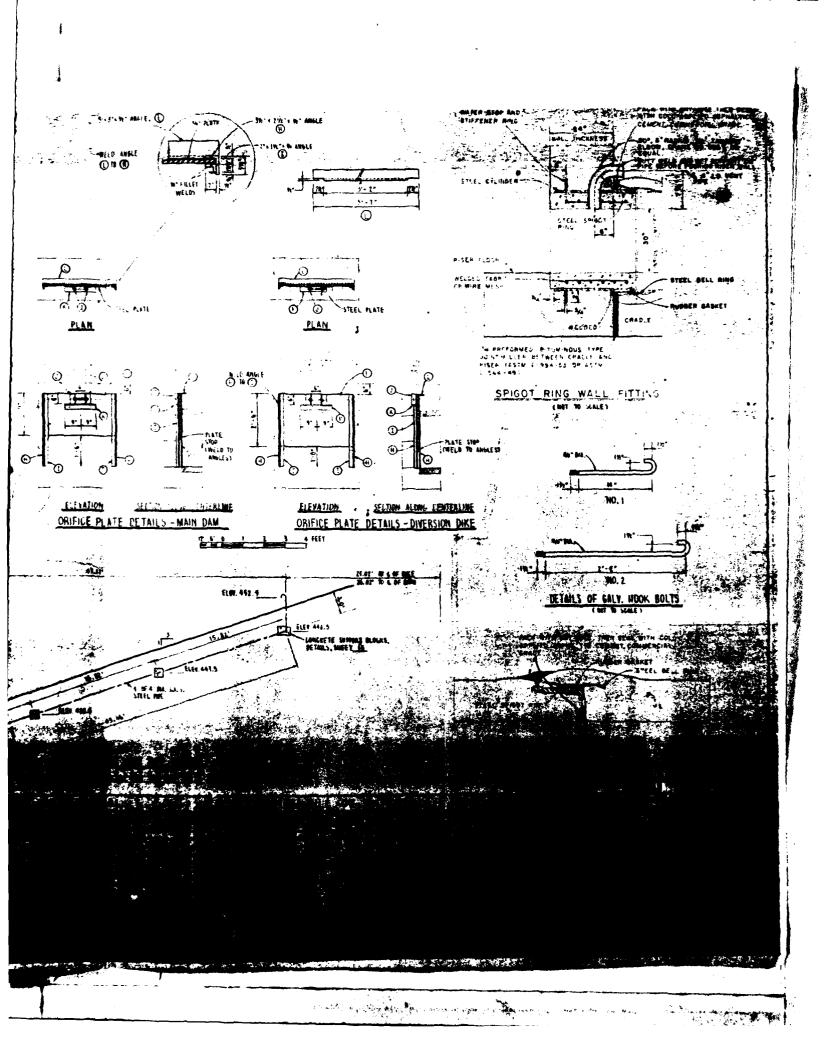


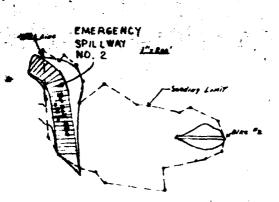


AD-A144 588 NATIONAL PROGRAM FOR INSPECTION OF NON-FEDERAL DAMS 2/2 TALCOTT RESERVOIR DAM(U) CORPS OF ENGINEERS WALTHAM MA MEW ENGLAND DIV MAY 81							
UNCLASSIFIED					F/G 13/13		
			F	EE	36		
EEE		381					
	EN BAT G	D Ha					
		_					

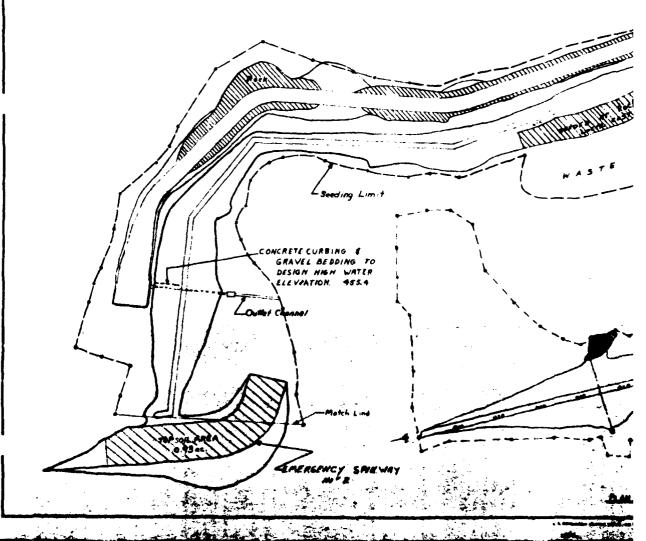


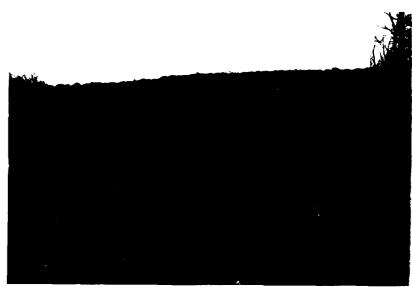

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 ~ A


in the second of the second


. S.

. . .




PLAN OF DIVERSION D

PLAN OF DIVERSION DIKE & CHANNEL Total area to be reeded 36.8 ac.
seepen ar Local *057 .7 ac.
37.5 ac. Total AS-BUILT SOUTH BRANCH PARK RIVER WATERSHED PROJECT
PLOODINGER RETARDING SITE NO.1
TALCOTT RESERVOIR
WEST HARTFORD, COMM
PLAN OF SEEDING AREAS U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE M CN-418-P

APPENDIX C

PHOTOGRAPHS

C-1 TOP OF DAM - LOOKING EAST TOWARD EMERGENCY SPILLWAY

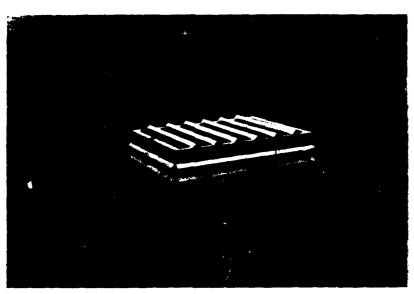
C-2 UPSTREAM FACE OF EASTERN SIDE OF DAM - LOOKING EAST.

MAIN DAM

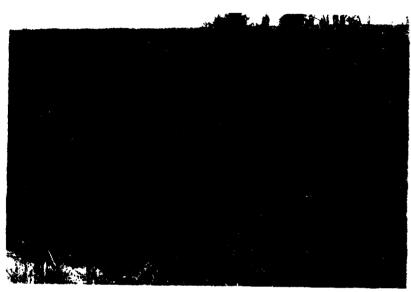
C-3 DOWNSTREAM FACE OF WESTERN SIDE OF DAM - LOOKING WEST

C-4 UPSTREAM FACE OF WESTERN SIDE OF DAM - LOOKING WEST

MAIN DAM


C-5 EMERGENCY SPILLWAY -LOOKING UPSTREAM

C-6 HOLE IN FLOOR OF EMERGENCY SPILLWAY NEAR DOWNSTREAM END



C-7 ANIMAL BURROW IN DOWNSTREAM FACE OF WESTERN SIDE OF DAM NEAR EMERGENCY SPILLWAY

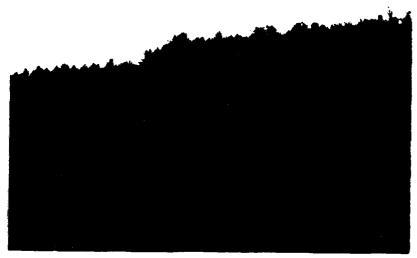
C-8 PRINCIPAL SPILLWAY INLET

MAIN DAM

C-9 PRINCIPAL SPILLWAY OUTLET - LOOKING NORTH. NOTE ANIMAL TRAIL ON EMBANKMENT.

C-10 PRINCIPAL SPILLWAY OUTLET, STILLING POOL AND DOWNSTREAM CHANNEL - LOOKING SOUTH

MAIN DAM


C-11 TOP OF DIKE AT WEST END OF DIKE - LOOKING EAST. APPROXIMATELY STATION 0 TO 11.

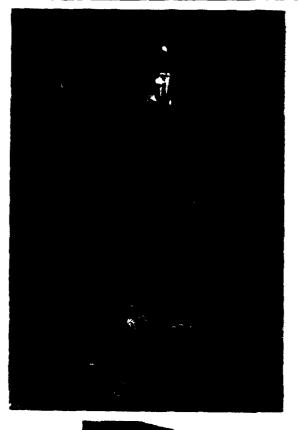
C-12 WHEEL RUTS IN TOP OF DIKE -LOOKING WEST. APPROXIMATELY STATION 26 TO 22.

C-13 SEEPAGE AREA AT TOE OF DOWNSTREAM EMBANKMENT - LOOKING NORTH. APPROXIMATELY STATION 8.

C-14 ROCK FILL AREA OF DOWNSTREAM FACE -LOOKING WEST. APPROXIMATELY STATION 13 TO 16.

The second secon

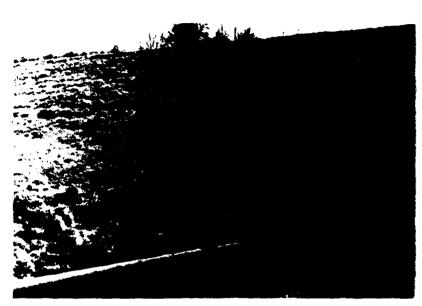
C-15 UPSTREAM FACE OF DIKE AND START OF DIVERSION CHANNEL - LOOKING SOUTH. APPROXIMATELY STATION 7 TO 19.


C-16 DOWNSTREAM FACE OF DIKE -LOOKING NORTH. APPROXIMATELY STATION 22 TO 15.

C-17 EMERGENCY SPILLWAY AND UPSTREAM FACE OF DIKE AT EASTERN END - LOOKING WEST. APPROXIMATELY STATION 30 TO 23.

C-18 EMERGENCY SPILLWAY - LOOKING UPSTREAM FROM DOWNSTREAM END.

C-19 EROSION OF UPSTREAM FACE BELOW PRINCIPAL SPILLWAY VENT.



C-20 PRINCIPAL SPILLWAY INLET

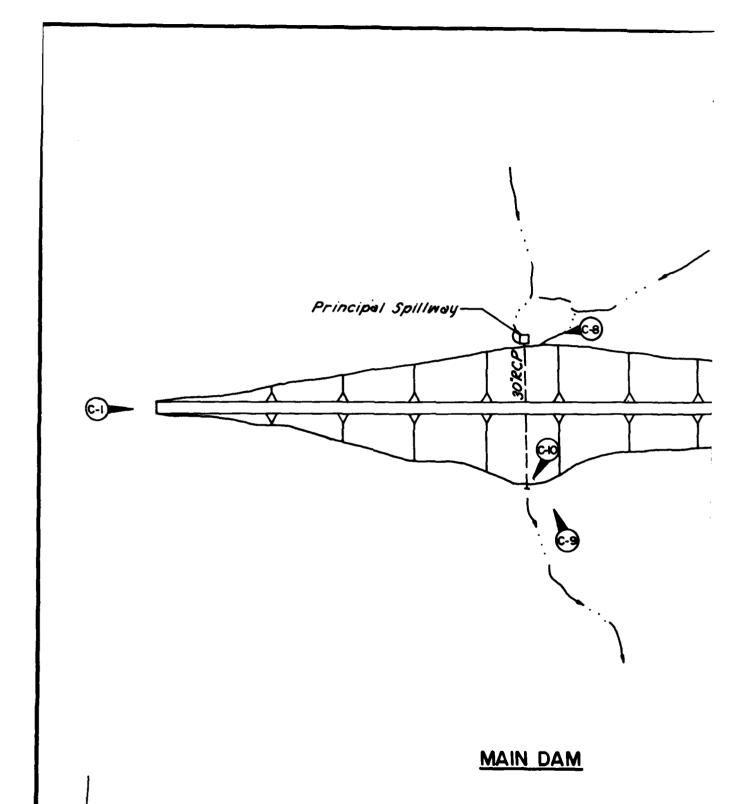
DIVERSION DIKE

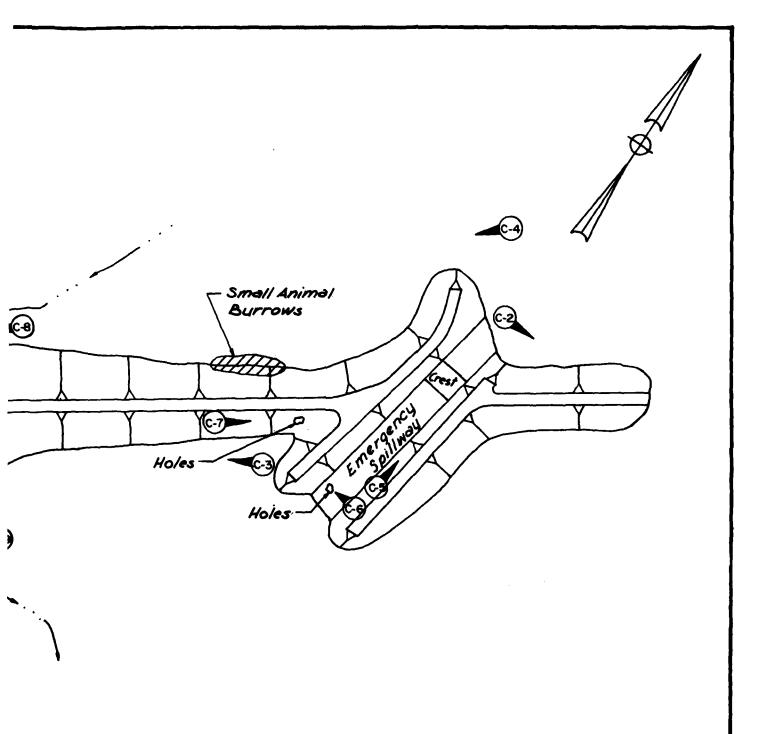
C-10


•

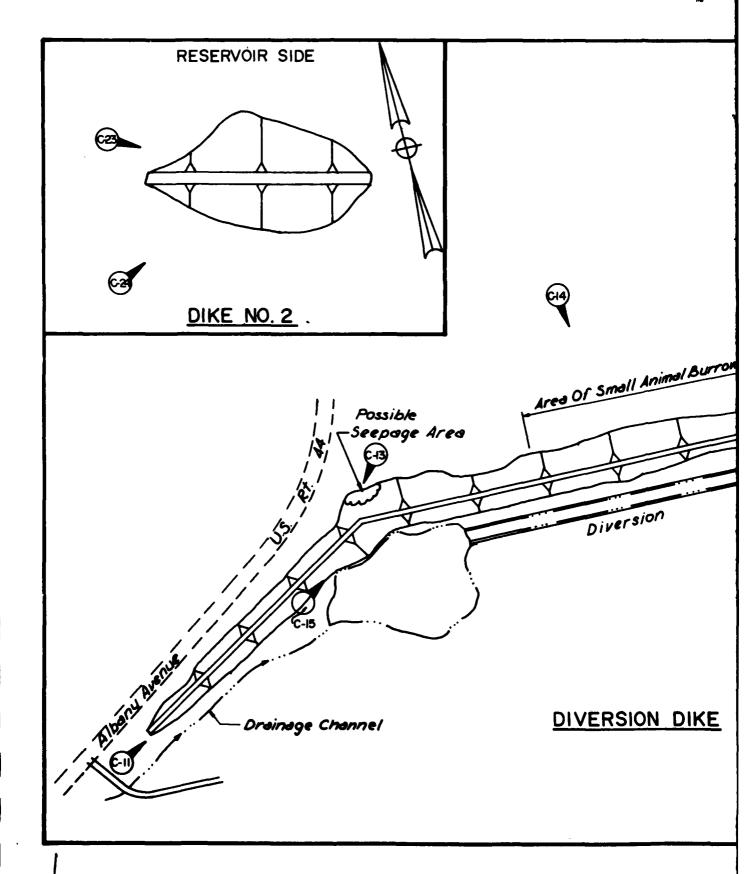
C-21 SLOUGHING OF DOWNSTREAM EMBANKMENT AROUND PRINCIPAL SPILLWAY OUTLET.

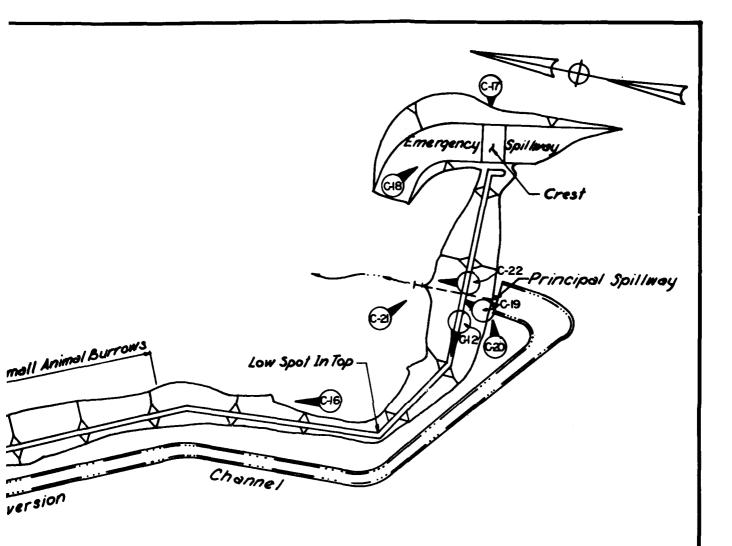
C-22 PRINCIPAL SPILLWAY OUTLET, STILLING POOL, AND DISCHARGE CHANNEL.




C-23 TOP OF DIKE NO. 2 - LOOKING EAST

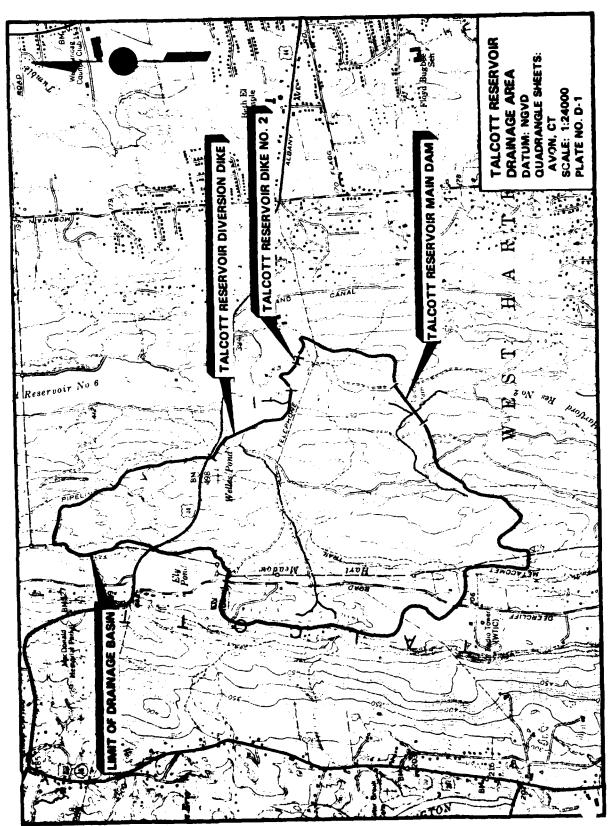
C-24 UPSTREAM FACE OF DIKE NO. 2 - LOOKING EAST


DIKE NO. 2



TALCOTT RESERVIOR DAM
PHOTO INDEX

2



RSION DIKE

TALCOTT RESERVOIR DAM PHOTO INDEX

APPENDIX D

HYDROLOGIC AND HYDRAULIC COMPUTATIONS

D-1

•

1

HYDROLOGIC AND HYDRAULIC ANALYSIS SUMMARY SHEET

Dam Talcott Reservoir
Test Flood PMF
INFLOW HYDROGRAPH DEVELOPMENT
Drainage Area sq. mi.
Probable Maximum Precipation 24 hour - 200 square mile PMP 21.5 inches
Initial Railfall Loss 0 Inch Uniform Railfall loss 1 Inch
Snyder's Lag 2.9 hours Snyder's Peaking Coefficient 625
Test Flood Inflow 4047 CFS
PMF Inflow 4047 CFS
RESERVOIR ROUTING AND DAM OVERTOPPING
Test Flood Outflow 2666 CFS
Spillway Capacity at Top of Dam 5400 CFS (All spillways) 203 % of Test Flood
Flow Over Spillway at Test Flood 2535 CFS (Both Emergency Spillways)
Spillway Crest Elevation 452.5 Feet (Emergency Spillways) Top of Dam Elevation 458.0 Feet Test Flood Elevation 456.24 Feet

FLOOD MYDROGRAPH PACKAGE (MEC-1)
NAM SAFEY VERSION
LAST MODIFICATION SEFER 19
LAST MODIFICATION SEFER 19

	•		•	~			1	450	
	~		Ŧ		-	ANAL YS IS	98.8.0A	4 50	s.
	•		I HYDRORR/			1 10PP 1NG /	-435.8		•
10. cf.	٠		INFLOW	148		- OVER	90 - 19	445	.67
8-100/87 I HARIFO	•		PINENT OF	3.5		HRU POND	58.96 3	•	1.5 431.85 .67
9 807 - HE	•		- DEVELO	154		JGRAPH 1		438	1.5
MALYSIS	•	-	OF PMF -	=	2.0	OW HYDHC	26.10		2.1
DAM SAFETY AMALYSIS - JOB 88-188/87 FRJ TALCOIT RESERVOIR DAM - MEST MARIFORD, CT.		*•.	COMPUTATION OF PWF - DEVELOPMENT OF INFLOW HYDROGRAPH	21.5	6.629	I ROUTING INFLOW MYDHOGRAPH THRU POND - OVERTOPPING ANALYSIS		4 39	130
A2 IAI	75	v - ri	#05 .	•	2.5	1 1004	~•	431	18 +52.5
77	7 0	275	× 2 ;	٠ .	- » ×	۸5,	- Z S	36	=

•

BUN DATE # #2/04/81. TIME# 14.53.36.

DAM \$AFETY ANALYSIS - JOB BO-198707 FRJ Talcott reservoir dam - West Hartford, CT. 81-23-81

NSTAN O 19.1 JOB SPECIFICATION IHN MIN METRC 0 LROPT IDAY JOPER n o

å z

MULTI-PLAN ANALYSES TO BE PERFORMED WPLANK I NRTIOK 2 LRTIOK I .. 50 1.00

RT105=

••••••• ******** •••••••

D-4

•

•••••••

COMPUTATION OF PMF - DEVELOPMENT OF INFLOW HYDROGRAPH

SUB-AREA HUNOFF COMPUTATION

INAME ISTAGE FAUTO 1892 0 IECUN ITAPE 0 0 I COMP

ISNOW ISAME 84710 0.000 MYDHOGRAPH DATA TRSDA TRSPC 1.61 0.00 SWAP 0.00 1.61 I WHG 1HY06

872 0.00 PHECIP DATA SPFE PMS R6 R12 R24 R46 18SPC COMPUTED BY THE PROBRAW 15 .888

DLTKR RTIOL ERAIN STRKS RTIOK STRTL CWSTL ALSMX RTIMP 0.00 1.00 0.00 0.00 1.00 0.00 .10 0.00 0.00 LROPT STRKR

UNIT HYDROGRAPH DATA TP# 1.71 CP# .63 NYA# 0

UNIT HYDROGRAPH 9 END-OF-PERIOD CHUINATES, LAG* 1.70 MJURS, CP= .A2 VOL= 1.00 145. 345. 144. 6. 3. RECESSION DATA
APPROXIMATE CLARK CREFICIENTS FROM GIVEN SNYDER CP AND 1P ARE IC= 1.94 AND R= 1.37 INTERVALS

HA.MN PEP10D RAIN EXCS LOSS COWP O HO.DA HR.MW PER10D BAIN EXCS LOSS #0.0#

;

	10 172. 10 372. 10 202.			83.1 683.580.
2 2.08	****			4 620.1 4 620.1 4 620.1 54135. 631.2 530.3 1995.
	22.00 23.00			707AL
			· ·	72-HOUR 335. 23.24 590.20 1994.
~ ~	~~~-		112.0 100	24-HOUR 920. 26. 21.27 540.19 1855.
==				6-MOUR 2748. 78. 15.88 403.27 1661.
				PEAK 4047. 115.
: :		7779998744		CFS CMS INCHES INCHES ACAFT
. •				7

D-5

INFLOW(1), OUTFLOW(0) AND ORSERVED FLOW(*)
1000. 2500. 3000. STATION

• 140•

* i.,

D~7

· ...

•		
Ľ		
۰		
i		

1

	•	Ě.	HYDROGRAPH A1	AT STA H	1 508	=	1 0118		•	•
	::,	: A			: .	· ;	: ; '		- •	- <u>%</u> .
	ž,	:		39.		153.	263.	340	. 5.	1446
		67.		62.	376. 56.	54.			: :	29
* :	196.	33.		31. 16.	29. 15.	27.	32	24.	22.	12
	5		PEAK 2024.	6-HOUR 1374.	24-HOUR	72-HOUR 168.	TOTAL	VOLUME 12067.		
	SHO		57.		13.	5.		342.		
	¥			201.63	270.09	205.10		295.16		
	AC-FT THOUS CU H			<u>:</u> :	913. 1126.	997.		997. 1230.		
		ž	7000	AT 514	100	=	6 0110			
	÷:	~ ~	2. 5.	٠.,	.2.		182.	164.	. 60	- 25
		•		•	•		-	•	ė	
		£37.	:	276.	297.	306.	526.	1098.	1749.	2882
		133	•	124.	116.		101			20
; 3	: *	35.		62. 31.	žź			:	ŧ	7
			PEAK	6-H0UR	24-HOUR		TOTAL	VOLUME		
	CFS	-	1047.	2748.	926			24135.		
	THEORES		-61	15.46	21.27	23.24		23.24		
	#			463.27	\$40.19			590.32		
•	ACAFT			1363.	1825.			1995.		
_	MOUS CE N			1681	2251.			2460.		

•	• • • • • • • • • • • • • • • • • • • •	•

•••••

• ;.

	#001 IN	B IMPLON	BOUTING IMPLOW MYDROGRAPH THRU POMD - OVERTOPPING ANALYSIS	THRU	A0 - 0H0	ERTOPPING	NALY!	513		_	
		15140	ICOMP 1	1ECON	ITAPE	J.	Tage	INAME 1	STAGE 0	14010	
	0.05	01.055 CL055	9.60 6.60	INES 1	ING DATA ISAME 1	1901	d o		LSTA		
		NS108	NSTPS NSTDL LAG ANSKK K TSK STORA ISPRAI 1 0 0.000 0.000 -435, 0	146	4MSKK 0.000	× 000.0	15K	STORA -4 35.	1 SPRAT		
CAPACITY=	÷	•	.92		189.	342.		.044	.686	1380.	
FLEVATIONS	431.	435.	435. 436.	438.	***	438, 440, 445, 450, 455,		450.	455.	466.	

D-8

•

'n.
•:
٠.
431.9
1.5
2.7
130.0
492.5

		-2.257£•0 0	3.8485.00		-2.909£ +00		-2.0416-01		-1,3536-01		2.0A6E.03
0AMU10 4255.	STATION 1. PLAN 1. RATIO 1 2 SUB-STEP 1 TIME 2.00 HR	FALANCE 2.525E-02 TIME 11.00 HR	CONTINUITY BALANCE -1.406E.00	TINE 13.00 MR	CONTINUITY BALANCE 9.703E-02	TIME 25.00 HR	CONTINUITY BALANCE B.196E-00	11ME 29.00 HR	CONTINUITY BALANCE 5.196F-88	11ME 32.00 MR	CONTINUITY BALANCE -3.623E.01
DAM DA1A COGO EXPO (PLAN 1. TIME	PALANCE TIME	BAL ANCE	TIME	BALANCE	TIME	RAL ANCE	1146	BAL ANCE	7 I E	BALANCE
C000 2.7	1. STEP 1	CONTINUITY	VIINII	UR-STEP 1	VT I MUITY	L 4318-BU	41 INCITY	UB-STEP 1	NT I MULTY	UB-STEP 1	NT INCITY
TOPEL 458.0	STAT10N 2 SUB-		3	13 SUR	ਨੁ	SS SUB	Ö	29 SUB.	3	32 SUB.	3
	PER 100	6E - 82 PFR 100	96 - 82	PE#100	6E - 02	PER 100	6.62	PER100	7E • 62	PER100	4 2 360E - 02
	TEMATIVE SOLUTION DID NOT CONVERGE. PERIOD	W.S. ELEV 4.353E-62 4.316E-62 constrain at mos convents. Prof	W.S. ELEV 4.318E-02 4.319E-02	NOT CONVERGE.	.3045-82 4233	TERATIVE SOLUTION AID NOT CONVERGE. PERIOD	3395.02 4.31	NOT CONVERGE.	4.5. ELEV 4.319E.02 4.317E.62	SOLUTION AID NOT CONVERGE. PERIOD	.3405-02 4130
	SOLUTION BID !	N.S. ELEV	W.S. ELEV	SOLUTION DID	#.S. ELEV	SOLUTION BID	W.S. ELEV	SOLUTION ATO	M.S. ELEV 4	SOLUTION BID	#.S. ELEV 4.340E.02
	EHAT I VE	STIMATED	STIMATED	FHATIVE	TIMATED	FRATIVE	TIMATED	FRATIVE	STIMATED	TFRATIVE	STIMATED

END-OF-PERIOD HYDROGRAPH ORDINATES

	- ;	ŝ	:	120	: :	: :			•	;	<u>.</u>	288.	623.	77.	703.			431.8	435.2	431.9	442.9	452.5	451.7	450.7		
	- ;	•	2	-12	=	15.			•	-	÷	199.	926.	:	=			431.4	435.3	431.7	6.011	452.5	451.0	450.0		
	- 5	j	:	125.		.51			:	•	•	147.	. 929	786.	<u>:</u>			431.4	435.2	431.9	439.7	452.6	451.9	450.9		
			:	::	=				•	.	-	119.	631.	192.	126.			431.9	435.1	431.2	438.9	452.6	452.0	451.0		
2	•							5		•							104	•	•	•	•	•	•	451.1		
OUTFLO	~ =	•	.7.	:		:	112.	STORAG	•	-	:	-	17.	885.	740.	663.	STAG	431.9	432.3	431.6	438.4	452.4	452.2	451.2	450.0	
	- 2	•	•	=	119.	<u>:</u>	113.		•	•	•	98			147.	671.		431.8	432.0	431.4	430.2	451.8	452.2	451.3	458.2	
	~ =	::	;		:	11.	113.		•	•	•	:	703.	115.	754.	£13.		431.9	431.6	431.0	438.1	490.7	452.3	+21.4	499.3	
	<i>:</i> •	÷	•	:	: :	Ξ.	113.		•	: :	-		678.	•16.	761.	5		431.6	431.0	435.	+30.0	5.000	182.4	461.5	*B*.	
	•	•	2.	:	=	:2	:		4	•		•	+24	950	160			431.0	431.0	435.1	432.5	145.0	4.62.4	4.164	+ 50.5	
								D-	9																	

131. AT TIME 47.00 HOURS PEAK QUIFLOW IS

TOTAL VOLUME	2600	÷.	₽. 4	124.73	421.	959.
72-HOUR	<u>:</u>	'n	16:4	124.70	421.	٠50.
24-HOUR	÷		2.75	69.93	236.	291.
6-HOUR	124.	;	.72	19.19	;	76.
PE AK						
	CFS	CMS	INCHES	I	AC-FT	THOUS CU H

....

'LOU(1). OUTFLOW(0) AND OUSERVED FLOW(*)
1206. 1600. 2000. 2400. STATION

. 140.

D-11

•	
•	
•	
╼	
2	
·	

		-4.7596.00		-1.5776-01		-1.9636-01		-2.989£ + 00		-4.4786.00
RAT10 2	2.00 HR	3.607E+03	5.00 110	-7.5956-01	6.00 IB	1.2456.01	9.00 HR	1.1515.03	31.03 ER	CONTINUITY BALANCE -4.563E+00 -4.
PLAN 1:	1 1 ME	PALANCE	7 IME	RALANCE	7 INE	BALANCE	TIME	BALANCE	TIME	BALANCE
-1 NOI 1:	SUB-SIEP 1	CONTINUITY	SUB-STEP 1	CONTINUITY	SUB-STEP 1	CONTINUITY	SUB-STEP 1	CONTINUITY	SUB-STEP 1	CONT [NUT TY
21	~		80		•		•		3	
	WE SOLUTION DID NOT CONVERGE. PERIOD	ED M.S. ELEV 4.396E+82 4:318E+82	VE SOLUTION DID NOT CONVERGE, PERIOD	ED M.S. ELEV 4.319E.02 41319E:02	WE SOLUTION DID NOT CONVERGE. PERIOD	ED M.S. ELEY 4.321E.02 4.317E.02	VE SOLUTION DID NOT CONVERGE . PERIOD	ED W.S. ELEV 4.366E.02 41317E.02	VE SOLUTION DID NOT CONVERGE . PERIOD	ESTIMATED W.S. ELEV 4.348E.02 41348E.02
	Ξ	1	Ē	=	Ē	A 7EL	Ξ	I TE	E	A TE

END-OF-PERIOD HYDROGRAPH OMDINATES

08 A 6 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	20. 39. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25	**************************************	
			-
			_
2-5 0 0 0 2 2 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	_
		100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	_
		100 00 00 00 00 00 00 00 00 00 00 00 00	_
- M - N - N		116. 10.00 1	_
- M - C - C - C - C - C - C - C - C - C			_
			_
			_
10. 72.		1655.	_
72.		55.5	_
. 920		1655 1655	_
835.	803.	909	
790.		•	
	741.		
11A0E	\$18		
431.7	431.9	431.5	•
435.1		432.4	•
5 435.4 435.3	435.5	435.7	435.8 435.7
437.5	4.36.9	436.2	•
454.2		455.8	•
452.7		152.7	•
452.1		452.2	•
		451.3	•

•

PEAK OUTFLOW IS 2666. AT TIME 43.00 MOURS

• ; .

TOTAL VOLUME 15186. 410. 14.62 371.43 1255. 1548.
72-HOUR 211. 6. 14-62 371-38 1255. 1548.
24-MOUR 521. 15. 12.05 306.02 1034.
6-MOUR 1543. 44. 8.91 226.41 765.
PEAK 2666. 75.
CFS CMS INCWES MA ACAFT ACAFT

STATION 1

			196	0 - 11 70	WIFLOW (O)	AND OBSE	INFLOWITH DUTFLOWION AND OBSERVED FLOWI'M				•	•	•
	:	.	:	.906.	2000	2500.	3010.	3500.	1000	4500.	•	•	•
:	= ;	•	•	•	•	_	•	•	•	•	•	•	•
	Z :	•	•	•	•		•	• •	• 1	• •	• •	• •	• •
		•	• •	• •	• •		• •	• •	• •	•	•	•	•
		• •		•	•	•	•	•	•	•	•	•	•
;	:=		•	•	•		•	•	•	•	•	•	•
7.0	11	•	•	•	•	•	•	•	•	•	•	•	•
:	=	•	•	•	•	_	•	•	•	•	•	•	•
	= =	•	•	•	•		•	•	•	•	•	•	•
		•	: .		•						•		
12.00	121	•	•	•	•	_	•	•	•	•	•	•	•
13.00	131	•	•	•	•	-	•	•	•	•	•	•	•
:	=	•	•	•	•		•	•	•	•	•	•	•
15.00	1.51	•	•	•	•		•	•	•	•	•	•	•
	10:01	•	•	•	•		•	•	•	•	•	•	•
	-	•	•	•	• 1		• •	• (• •	• •	• •	• •	• •
		٠.	• •	• •	• •			• •	• •	•	•	•	•
20.00			••••••	•	••••••		••••••	**********	•••••••	7		•	
7.00	9	•	•	•	•		•	•	•	•	•	•	•
22.00	5210	•	•	•	•		•	•	•	•	•	•	•
23.66	0162	•	•	•	•	_	•	•	•	•	•	•	•
-		•	•	•	•		•	•	•	•	•	•	•
13		•	•	• •	• •		•	• (• •	• •	• •	•	• •
	212	• •	• •	• •	• •		• •	•	• •	•	•	•	•
	910		•	•	•		•	•	•	•	•	•	•
5.00 2910	2910	•	•	•	•		•	•	•	•	•	•	•
:	30 f	••••••	::::::			•••••			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•	
:		•	•	•	•		•	•	•	•	•	•	•
	1 0 2	•	•	• •	• 1		• •	• (• •	• •	• •	• •	• •
	0.0			•	•			•	•	•	•	•	•
	35.0		•	•	•		•	•	•	•	•	•	•
12.00	36.0		•	•	•	_	•	•	•	•	•	•	•
3.0	97.0	:	•	•	•		•	•	•	•	•	•	•
		•	•	•	_		•	• 1	•	• •	• •	• (• (
	9.0		•	•				•	•	•			
-		•	•	•	•		•	•	-	•	•	•	•
	,	•	•	•	•		· ·	•	-	•	•	•	•
		• •	• •	. 7		٥		• •	• •	• •	• •	• •	• •
7						,		•	•	•	•	•	•
72.00	:	-	•	•	•		•	•	•	•	•	•	•
73.00	1	ė	•	•	•		•	•	•	•	•	•	•
		•	•	•	•		•	•	•	•	•	•	•
	10.1.0	•	•	•	•			•	•	•	•	•	•
9.0	51. 10		:	•	•	, , , , , , , , , , , , , , , , , , , ,	•	•	•		•	•	
•	52. 10	•	•	•	•		•	•	•	•	•	•	•
2.0	53.	•	•	•	•		•	•	•	•	•	•	•
			•	•	•		•	•	•	•	•	•	•
	55. IO	• •		• •	• (•	• •	• •	• •	• •	• •	• •	• •
	57.	• •		•	, •		· •	•	•	•	, •	•	, •

,

- 40.

•

٠-

~ %

- • • • • • • •

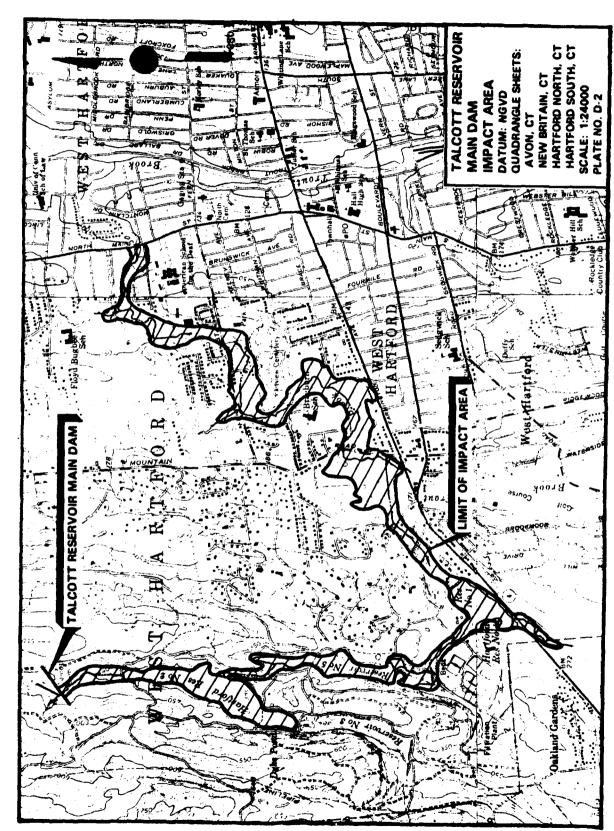
7-0--0---

D-14

•

71. 21.

PEAK FLOW AND STARGE LEND OF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS) PER SECOND) ABER 18 ROMADE MILLER ARGUMENT AND CONTRACTORS


			101	M CUBIC FE AREA IN SQ	ET PER SEC UARE HILES	FLOWS IN CUBIC FELT PEN SECOND ICUPIC METERS PER SECOND AREA IN SQUARE MILES (SQUARE KILOMETERS)
OPE HAT I ON	STATION	AREA	ž	AMEA PLAM MATIO 1 MATIO 2	PATIS 2	RAIIOS APPLIED TO FLOWS
HYDNOSAAPH AT	_~	1:1:		1 2024, 4047,	14.611	
40UTED 10	_~	1.6		131.	131. 2666.	

-,,

SUMMARY OF DAM SAFETY AMALYETS

	TIME OF FAILUR HOURS	•
TOP OF DAM 458.00 1224. 4562.	TIME OF MAX QUIFLOW HOURS	47.00
	DURATION Over top Hours	000
SPILLWAY CREST 452.50 824. 120.	MAXIMUM OUTFLOW CFS	131.
NITIAL VALUE 435.00 47.	MAXIMUM STORAGE AC-FT	1096.
AT T	MAXIMUM DEPTH OVER DAM	•••
ELEVATION Storage Outflun	MAXIMUM Reservoir H.S.Elev	452.68
	RATIO OF PMF	

TALCOTT RESERVOIR MAIN DAM

n-1 R

Talcott Reservoir - Main Dam Dam Failure Analysis

1. Failure discharge with pool at Em. Spillway (elev. 452.5) = 2		L	with	tEm.Spillway (ele	y. 452.5) =	28000	CFS
--	--	---	------	-------------------	----------	-----	-------	-----

2. Depth of water in reservoir at time of failure = 24.5 ft.

3. Maximum depth of flow downstream of dam = 24t ft.

4. Water surface elevation just downstream)
of dam at time of failure) = 452±

The failure discharge of 28000 CFS will enter and flow downstream 29000 feet until the brook crosses North Main Street .

Valley storage in this 29000 feet length of brook is significant in reducing the discharge. Also due to roughness characteristics, obstructions and frictional losses, it is very likely that the unsteady dam failure flow will dissipate its wave and kinetic energy and thus convert to steady and uniform flow obeying Manning's formulae 29000 feet downstream. The failure profile will have the following hydraulic characteristics:

DISTANCE FROM THE DAM	WATER SURFACE ELEVATION	DEPTH (ft.)	REMARKS
0	452.5	24.5	At Dam Hartford Res. No. 5 Hartford Res. No. 1 North Main Street
1600	397.8	7.8	
7500	323.8	3.8	
11800	260.7	2.7	
19000	142.2	2.2	
25000	131.7	1.7	
29000	102.±	2±	

NOTES:

"Rule of Thumb" Guidance for Estimating Downstream Dam Failure Analysis

DATA

Name of Dam Talcott Reservoir - Main Dam
Location West Hartford, Connecticut
Drainage Area 1.6 sq. mi., Top of Dam 458.0
Spillway Type Grassed Channel , Crest of Spillway 452.5
Surface Area @ Crest Elev. 65.7 Acres = 0.10 sq. mi.
Pool Bottom Near Dam = 428.0
Assumed Side Slopes of Embankments = 2H:1V
Depth of Pool at Dam (Yo) = 24.5 Feet
Mid-Height Elev. 440.2
Length of Dam at Crest = 1325 Feet
Length of Dam at Mid-Height = 350 Feet
40 % of Dam Length at Mid-Height = $W_b = 140$ Feet
Step 1
Storage (S) at time of failure 826 Ac-FT
Step 2
Peak Failure Discharge Q _{pl} = 8/27 W _b \sqrt{g} Yo 3/2
= (1.68) (W b) (Y o) $^{3/2}$ = 28000 cfs
Failure is assumed to coincide with pool elevation at Spillway Crest
NOTES:

ВУ <u> </u>	DATE 2/10/8/	, 		ANA LYSIS	7007 SHE	NO. BUTTO PURCELL ASS ENGINEERS - ARCHITEC	
DAM	7	ALCOTT	RESER	VOIR - M	AIN DA	M	· · · · · ·
SECTIO	- N	600 -	00257	REAM			
USING	$Q = \frac{1.48}{D}$	6 A R 2/3 S	1/2	n = 103	SLOPE	(S _k) = <u>•0</u>	2 1/
3							_
400							
_							<u> </u>
4 390 <u> </u>		· 310	HANNEL	SECTION			_
	e, = 280		μ,	ULL SPILL	_	75 826	CFS AC-FT
ربی	e,		~3	TAL STORAG	& (3)=_		_AC-F/
ELEY	AREA	WP	R	Q	DEPTH		
400	2000	400	<u>R</u>	41000	10		
395	500	200	S'2	6000	5		
		·		-	}		
•	1		l	1		l	-
400					·		-
3	98.1						-
3	97,8						
3		/					-
- 285 F							•
o			(CF5)		5000		
V, =(245+8.1	<u>/</u>)(<u>/</u> /	350+0	43560	-)(½)2_	94	AC-FT
		_		00 CFS		= <u>93</u>	
	•			92	AC-FT		
•	= Qp, (1-				_	y = 397, y = 7,	
	L SPILLWA				6.8	Par market and make an	
	و ما د استواد او د		D-21	e e susse e se e e e e e e e e e e e e e	e a Marangan Marangan	·	-
	.: .			,	•	•	

24

His are disserted on the person

.

IKO. BY ERT. DAT	2/19/81	T PAILURG AN		JOB NO. 4	ELL ASSOCIAT
DAM	TALCOTT	RESERVOI.	<u> </u>	MAINOR	7
	7500	DOWN STRE		APTEANA AA	E A.O. 5
SECTION.	7333		7		
USING G	1.486 A P	135,1/2 n=	.03	SIOPE (5.)	003
	· · · · · · · · · · · · · · · · · · ·				
330			·		
		·	·		
.320				oc .	
		CHANNEL SEC	7100		
	2 <i>50</i> 00		SPILLWAY	~5	S CF.
		LAS TOTAL	STORAGE (S)=	AC-P
ELEY A	REA WA	R	0	DEPTH	
	200 600	2	5000	2	
325 3	125 650	4,8	24000	5	
3251					
325 325.1					-
323.8					
222	· •				
		(CFS)		20000	
· + + +	51 \/140	*0	-9 <i>0</i> 0 \ /		_
- (-1:6	$\left(\frac{5}{\sqrt{5}}\right)\left(\frac{5}{\sqrt{5}}\right)$	2 + 650+600 (43	1560 X	t)=	S AC-1
	C . V. /-) - 10000			
Wp = Q	A (1- 1/5)) = 16000	CFS	Vava = 2	.66
V2 = (-7)	3 + 3.8	17) = 272	 	C-ET	
aine ait 🍆 🍾 😘	· Z.·····/\ /	'', / - 		· • · F /	
Op = 0	p. (1 - VAVE/5) = 16000	CFS	ELEV =	3 23. E
6	, -			_	3, 8
FULL SA	ILLWAY & DEC	07H = C	<u> </u>		**
INGRE	isk ove to o	AM FAILURE	3.	8	
المستحدث أوالم	1		karangan sabatan sa Tig	الرواج والمطالب والمواط	
		D-22	•		•

.

* .

يتمهون والاستان المالات

IY JR HKD. BYES	DATE 2/19/8	·		GNA LYSIS	108	PURCELL AS	
DAM		TALCOTT	RESER	voir -	MAIN D	BH	
SECTI	ON	1800 100	WN STRB	AT -HA	TFURD	res No	-/
USING	$Q = \frac{1.48}{n}$	86 A R 2/3 S	<u>'/</u> Z ,	7=03	SLOPE ((S _L) =	005 1
<u> </u>					/		
268 — -		\					
255 -							
1 630 -		6 CM	ANNEL	SECTION	600	70	
_	- 1600	20 0		ULL SPILLW		75 826	CFS
G	Pp, = 1600		·s /0	TAL STORAG	F(S)=	020_	AC-FT
ELEV	AREA	wp	<u> </u>	Q	DEPTH	1	<u>.</u> *
260	1200	600	2	7000	2		
262	2500	650	3, €	21000	. 4		
							•
J		·			· 	<u> </u>	
1 262							
192	261.4						
261	260,7						
1260						 	
O		!	(CF5)		2000	I	
V, -	2 (3.6 + 3.	(6501600	+ 650+600)	4300	(之)=	222	AC-FI
							_
Qp	= Qp, (1	- V/s)=	- 120	CFS	VAVE	= 2/2	
vs.	3.8 + 2.	7)(62) =	29	AC-FT		
Q _P	= 00, (1-	VAVE/5) =	= /2	OCO CFS	ELE	1 = 26	0,7
•	•				DEPI	-H =	2.7
	LL SPILLWA			-	2.7	-•	
//	CREMSE D	UE TO DAY	T FAILU	K &			· • • • • • • •

٠.

	DATE 2/19/8	·	EAILURG A	NA LYSIS		NO. 90-10 PURCELL ASI ENGINEERS - ARCHITE	-
DAM	TA	LCOTT R	ESERVOIR		- 74	NOAA	
	10	000 0	OWNSTR			engage of the control	
SECTIO	<u> </u>	000 0	SUNSTR	577			
USING	G = 1.48	6 A P 2/3	SL'12		SIOPE	'C.)= .0	05
	7	T				· · · · · · · · · · · · · · · · · · ·	·
150-							
, 	·						_
140-		_	 				
	*****		HANNEL S		650		
	126	-		ILL SPILL		75	_ CFS
ශ,	e, = 120		FS TO	TAL STORAG	(S) = _	065	_AC-F7
ELEY		WP	R	Q	DEPTH	T	•
142	1300	650	2	7000	2		
144	2600	650	4	23000	4		
Ţ.		}			/····		
1							
,44 <u> </u>							<u> </u>
,44							
							-
19	12,5° 42,2						
19	12.5						
19			(crs)		2000		
19	42.2	5 \/650rac		7200	And And Annual Control		ACLE
19	42.2	5) (650rac	•	7200	And And Annual Control		AC-F
142 - V, = (42.2 + 2.7 + 2.5	-)(+ 650		Xŧ)=_	274	AC-F
142 - V, = (Qp	2.7 + 2.5 2 - 2 (1	- \(\frac{1}{2}\)	+ 650 + 7)(CFS	X t)=_	274	AC-F
142 - V, = (Qp	42.2 + 2.7 + 2.5	- \(\frac{1}{2}\)	+ 650 + 7)(Xŧ)=_	274	AC-F
142 - (V) = (2.7 + 2.5 = QA (1	- v./s) -)(/os	+ 650 + 80	57 CFS	VANE AC-FT	274	
142 - V, = (Qp	2.7 + 2.5 2 - 2 (1	- v./s) -)(/os	+ 650 + 80	57 CFS	VAVE AC-ET ELEV	274	
//2 = (Qp Vz = (217 + 21 = QA (1 - 217 + 217 - 200, (1-	- V./s) -)(105 VAVE/S)	+ 650 + 80 = 80	57 CFS	VANE AC-FT	274	2
142 - 142 -	2,7 + 2,3 = QA (1 - 2,7 + 2,3 2 QA, (1-	- V./S) -)(105 VAVE/S)	+ 650 + 80 = 80	ST CFS	VAVE AC-ET ELEV	274	

• ...

, •

KD. DY ERJ	DA	T FAILURG A	NA LYSIS	D	PURCELL ASSOCIATE
DAM _	TALCOTT	RESERVO	12 - /	MAIN C) A M
SECTION	55000'	DUWNSTR	EAH		المارية المستقد المعالية المعا
	1	1 1 1			
USING	Q = 1.486 A R	135,12	= 103	SLOPE ((5,)= ,009
					
140-			i		
·					
130				65-0	
•• • • • • • • •		CHANNEL S	ILL SPILLW	AY Q_=	75 CFS
Qp,	5000		TAL STORAG	~ —	826 AC-F7
			Q	I	r
ELEY .	AREA WA	1	2000	OEPTH /	<u> </u>
133	1950 650	3	13000	3	
, ,t		t			l .
133					
L. L.	-				
132					
134	2				
		(c=5)	andream the sale alone allows	1000	,0
<i>t</i> . 2	2,2 + 2,2 \/ 6	501 . "650" \ /	6000	V/4 }	105
	5 (4 6/5)(6		43560	人 2 /-	177 AC-F
			1		
	QQ (1- V/s) = 60	00 CFS	Vanc	- 185
Qp:	Qq (1- 1/5	-		<u> </u>	- 185
Q _P =	Qq (1- 1/5 2,2 + 1,7)(E	-	00 CFS	AC-FT	2 /85
Qp==	3,2 + 1,7)(E	9) =	174	AC-FT	
Qp==		9) =	174	AC-FT	= 1317
OPE = C	3,2 + 1,7)(E) = 60 eth= =	174 00 CFS	AC-FT	= 1317

Talcott Reservoir - Main Dam

A.	Size Classification		•	
Heigh	t of dam = 30.0 ft.;	hence	Small	
Stora	ge capacity at top of dam (elev. 458	.0)= <u>120</u>	5_AC-FT.; henc	
Adopt	ed size classification: <u>intermedi</u>	ate	, <u></u>	ate
B.i)	Hazard Potential			
	The potential exists for the loss	of more	than a few liv	/es
	and excessive economic damage at	numerous	homes and bui	<u>lding</u> s
	in West Hartford.			
	Adopted hazard classification:	High		
ii)	Impact of Failure of Dam with poo	l at Em.	Spillway Crest	<u>.</u>
	It is estimated from the "rule of the following adverse impacts are a is dam.			
	a) Loss of homes 20+ b) Loss of buildings 10+ c) Loss of highways or roads 8 d) Loss of bridges 6		; ;	
from	The failure profile can affect a d the dam.	istance o	of <u>29000</u> fee	ŧŧ
c.	Hazard Potential Classifications			
HAZAR	<u>SIZE</u>	TES	ST FLOOD RANGE	
н	igh Intermediate		PMF	
Adopt	ed Test Flood = PMF	_ =	2510	_CSM
		=	4047	CFS
D.	Overtopping Potential			
	Drainage Area <u>1030 acres</u>	=	1.61 sq.	miles
	Spillway crest elevation = 4	52.5		
	Top of Dam Elevation = 4	58.0		
Capac	num spillway discharge city without overtopping of dam = cflood" inflow discharge = cflood" outflow discharge =	5400 4047 2666		CFS CFS

·....

TALCOTT RESERVOIR DIVERSION DIKE

5.

D-28

-4

Talcott Reservoir - Diversion Dike

Dam Failure Analysis

٦.	Failure	discharge	with	Loog	a+	Em. Spillway(elev.	452.51 =	57000	CES
⊥.	rallule	arscharde	MT CII	POOT	at		~ J = J =		CES

Depth of water in reservoir at time of failure = 24.5 ft.

3. Maximum depth of flow downstream of dam = 24± ft.

4. Water surface elevation just downstream)
of dam at time of failure) = ____452±_______

The failure discharge of 57000 CFS will enter and flow downstream 20000 feet until the brook crosses North Main Street.

Valley storage in this 20000 feet length of brook is significant in reducing the discharge. Also due to roughness characteristics, obstructions and frictional losses, it is very likely that the unsteady dam failure flow will dissipate its wave and kinetic energy and thus convert to steady and uniform flow obeying Manning's formulae 20000 feet downstream. The failure profile will have the following hydraulic characteristics:

DISTANCE FROM THE DAM	WATER SURFACE ELEVATION	DEPTH (ft.)	REMARKS
0	452.5	24.5	At Dam North Main Street
300	441.4	11.4	
5700	230.9	10.9	
9000	164.0	4.0	
11000	160.0	4.0	
15500	143.0	3.0	
20000	103.±	3±	

NOTES:

· 5.

"Rule of Thumb" Guidance for Estimating Downstream Dam Failure Analysis

DATA

Name of DamTalcott Reservoir - Diversion Dike
Location West Hartford, Connecticut
Drainage Area 1.6 sq. mi., Top of Dam 458.0
Spillway Type Grassed Channel , Crest of Spillway 452.5
Surface Area @ Crest Elev. 65.7 Acres = 0.10 sq. mi.
Pool Bottom Near Dam = 428
Assumed Side Slopes of Embankments = 2H:1V
Depth of Pool at Dam (Yo) = 24.5 Feet
Mid-Height Elev. 440.2
Length of Dam at Crest = 2860 Feet
Length of Dam at Mid-Height = 700 Feet (Portion over outlet)
40 % of Dam Length at Mid-Height = $W_b = 280$ Feet
Step 1
Storage (S) at time of failure826 Ac-FT
Step 2
Peak Failure Discharge $Q_{p1} = 8/27 W_b \sqrt{g} Y_0^{3/2}$
= (1.68) ($^{\text{W}}$ b) ($^{\text{Y}}$ o) $^{3/2}$ = 57000 cfs
Failure is assumed to coincide with pool elevation at Emergency Spillway Crest
NOTES:

~ . .,

ND. BY ERJ	DATE 2/10/8			qnalysis	Joe	NO. 80-100 PURCELL ASSO EYGINEERS ARCHITECTS	<u>/</u> 0
DAM	TAG	COTT R	ESERV	oir - L	DIVERSI	an alke-	
SECTIO	w3	ou PEET	Down	VSTRGAM	<u> </u>		·
USING	Q = 1.48	6 A R 2/3	1/2	1= .03	SLOPE	(5,)= .02	9
454	· · · · · · · · · · · · · · · · · · ·			: 		<u> </u>	
440							
430							
	erannen britain an en	<u>c</u> /	HANNEL.	SECTION	·		
			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ULL SPILLWA	AY Q=	45	CF.
Q,	, = 5700	20 <u> </u>	FS 70	TAL STORAG	F(S)=_	<u> </u>	9C-F
ELEV	AREA	wp	R	Q	DEPTH		
440	1600	270	5.9	44000	10	<u></u>	
443	2405	350	7.5	78000	13		
442	2100	300	7	6500c	12		
472	141.4						
440		2000	(CFS)	4060		6000	
V, =(24.5 + 11.	(ZSC	7300+56	/ 300 43560)(t)=_	38	9 C-/
		•		OC CFS		=	- ,
					AC-FT		
•	= 0p, (1-					/ = <u>441.4</u> ·H = 11.4	
FUL	L SPILLWA REASE OF	Y = DERTH	M FAILU	ce =/	1.4		•
				and a supplied in the	and the last		

-.._.

HKD. BY ERT			DAM INSA FAILURG I			PURCELL A	eo/o/
	· · · · · · · · · · · · · · · · · ·	COTT			EP'S 1041	ENGINEERS · AACH!	TECTS • PLANNER
DAM _	////	CO// X	ESERVOI	(- D/OB		UITE	
SECTION	" حج	700 t D	OWNSTRE	5 19 49			
SECTION			1 .		 	· .	
	0 - 1.48	36 A R 2/3	-1/2	,= .03	51005	(c)=	05
:	u - n		32 7		32078	7-56 7	
3 Ac				/			
							
ves							
722							
oss +	 		HANNEL	SUCTION			<u> </u>
		•		ILL SPILLWI	AY Q =	45	CFS
Q.	= 550	00		TAL STORAGE		826	AC-F7
			14				
ELEV	AREA	WP	R	Q	DEPTA		
530	850	120	7,1	3500c	10		
235	1575	160	9.8	80000	15		
235					·		
,	·						
							
	z.3		_/			·	
23	0.9				·		·
ا 23ء لــــ							• ••
	2004	- 1	(CFS)	8004	•		
(1	11.4. + 12	13 \ /300+	SO 140+50 \/	5400	V1)	100	
	. S	-/(-z	140+50	43560	人 2/1_	198	AC-F
	- (.	V./-)				102	
عملی ۔	Qp, (1	- 75)	= 420	CFS CFS	. VANG	= 192	
	11.4 + 10	9 16	7)=_/	106			
2 -	Z	——)(<i>/</i>			746-67		[
0. =	00 (1-	VAVG/e]	= 42	OOU CFS	E ,	v = 23	0.9
als -	- M, (.	/3/			ما ما ما	TH = 16	
FIII	مبدروري	Y ? DEET	.H = C	· · · · · · · · · · · · · · · · · · ·	UEP	/	
1210-	EREL A	7 4: WEE1	M FAILUR		0.9	منو بيسالي داد د دوجو د	
	6745 .U	1	FILLOR	-			
	eri Austria (mari den erio) (m. 1925) 1930 - Maria Maria (m. 1935) 1931 - Maria Maria (m. 1935)		المستعدد المستعدد الدارا	هر وده شد میشد. داشته سده میداشد		م المسلم الم المسلم المسلم	ا
:			D-32	. tan			

· 5.

DAM	TALC	· · · · · · · · · · · · · · · · · · ·		a serve as	DIUGRS	ENGINEERS - ARCHITE	CTS + PLANNER
SECTION 9000 'DOWNSTREAM USING G = 1.486 A R ^{2/3} S ₂ '/2 n = 1.03 SLOPE (S ₂) = .00 ITA (60 CHANNEL SECTION 1100 FULL SPILLWAY Q = 45 Qp = 42000 CFS TOTAL STORAGE (S) = 836 ELEY AREA WP R Q DEPTH (65 S675 1250 4.7 36000 S	. •						
USING	Q = 1.48	6 A R 2/3	5,1/2	n= ,03	Slope ((5,)= .0	50
			<u> </u>				-
			 				-
.474							
160							
**************************************	·	. ° <u>c</u>	HANNEL.	SECTION "	00		
-	· · · · · · · · · · · · · · · · · · ·		F	ULL SPILLWA	ay as=_		_ CFS
ره	o, = 920		FS TO	TAL STORAG	F(S)=_	826	_AC-F7
B (B)		4.0	٠		D& OTH	1	_, _:
	1			_		 	
167							- -
			1				
		-	1		_		
167							=-4
	165,5		·				
165		1640					- - +
163		76#					-
							_
		Soor	(CFS)	4000	·	6604	6
	1 10,9 + 5.	5 \ 1:140+5	~ . 1250+/100\	/ 3304	V(1)_	20 ···	
V, =	S	-/(2		43560	人了!-	399	_AC-F
Q_	-0-(1	- V./c)	= 220	900 CEC		. ? 79	
						<u> </u>	
V2 =	(19 + 4)	<u> </u>) =	365	AC-FT	- · · · · · · · · · · · · · · · · · · ·	
		,	•			4010	•
OPZ	= Qp, (1-	"AV6/5)	= 230	CFS		= 16%	
					DEPT	H = 41	-
FUL	L SPILLWA	•			l.d	س وجوس بنداد ده د ند	
	REASE DE		M CA		, –		

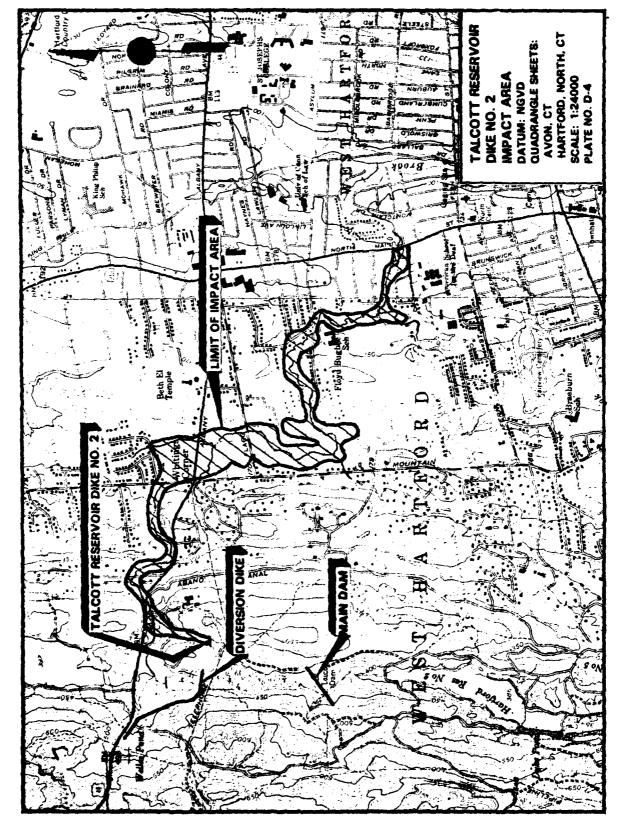
٠... نايد

7

HKD EVERT DATE 2/10/81	DAN FAILURG ANALY	JOB NO. 90 S/5 PUNCEL ENGINEERS	L ASSOCIATES
DAM TALCO	TT RESERVOIR -	DIVERSION DIH	
SECTION 1100	OUN STREAM		
USING Q = 1.486 A	R3/35/12 n=	03 SLOPE (SL)=	500.
			· · · · · · · · · · · · · · · · · · ·
166			
	·		
156	CHANNEL SECTIO	704	
THE TOTAL CONTRACTOR C	CHANNEL SECTION FULL SP	ILLWAY Q= 45	CFS
Qp = 23000		DRAGE(S) = SZG	AC-F7
			•
ELEY AREA W	P R Q		
161 3750 8			
	· · · · · · · · · · · · · · · · · · ·		
-161			
155		20000	
and the second s	(cfs)	-	
V. = (4,6. + 5,0)	(1250+Hel + 600+706) (4356	()= 20c	AC-F
i i i i i i i i i i i i i i i i i i i	·		
Qp=Qp(1-V	/s) = 17000	CES VAVE = /	8E
Vz = (4, 4, 4, 0)	(44) = 178	•	
2-1-5	4 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	76-61	
Qe = Qp, (1 - VAV	s/s) = 1800°	CFS ELEV = /	60,0
		DEPTH =	4,4
FULL SPILLWAY *		11.0	
INGREASE DUET	O DAM FAILURE 2	4,0	
		1 1 1 1	

£.

5, 5


DATE 12 DATE 2/1	0/8/	DAM INSA		100	NO. 90-/0 PURCELL ASI	OF
DAM	TALCOTT I	RESE RVO	12 - D			
SECTION	15500 1	DOWNSTR	EAM			- · ·
USING Q=1	486 A R 2/3	5.1/2 "	= 103	SLOPE (5,)= ,0	086
					·	
151					/	
				_/		
140	0-		Vic			
a and the second second	' ' <u>C</u>	HANNEL S	ILL SPILLWI	av 0 =	45	CFS
Qp, = 18	-		TAL STORAGE	•	826	AC-F7
		A				
ELEY AREA		R	Q	OEPTH	_	
145 5500	600	4,2	29000	<u> </u>		
143 1350	500	2.7	12000	3		
		Ĺ	! !		1	
145		1				 • ! •
147 143.8						
					ı	
143						
1400		-				
	/•o~	(CFS)	5.000	•	3000	
V, = (4,0 +	3,8 \ (1250111	500.90	4500	(·)=	3.27	AC-F
, , , S	/(≥	s //	43560	人 2 !		
Qp = Qp ((1-4/5)	= //0	CFS	Vanc	- 311	
•						
V2 = (4,0 +	——)(<i>8</i>	/ / .=	297	AC-FT	••	-
Opz = Op, (1- VAVE/5)	= //6	OU CFS	ELE		t 0
FULI SAIII	WAY & GERT	<i>H</i> = -	-	UEPI		·
INGREASE	DUE TO OF	H FAILUR	3	, 6	and the same groups	
		D-35			•	•
to the winter bound at 1. To	and the second of	mandaning to him the	و الله أسمعه أن يعاد من وأواسم	ditti i sakki sanici	الأرابية فالمواد أنع	والمراجع والمراجع والمراجع

so the first of the second of

Talcott Reservoir - Diversion Dike

A.	Size Classification	•	
Height	of dam = 30.0 ft	.; hence <u>Small</u>	 Inter-
	e capacity at top of dam (elev.		TII CET -
Adopte	d size classification: Inte	rmediate	
B.i)	Hazard Potential		
	The potential exists for the 1	oss of more than a few li	ves
	and excessive economic damage	at numerous homes and bui	ldings
	in West Hartford.		
	Adopted hazard classification: _	High	
ii)	Impact of Failure of Dam with r	oool at Em. Spillway Cres	<u>t.</u>
	It is estimated from the "rule of the following adverse impacts are is dam.	of thumb" failure hydrograms a possibility by the fa	aph, ilure
	a) Loss of homes 20+ b) Loss of buildings 1 c) Loss of highways or roads 4 d) Loss of bridges	; 10+ 7 5	
from	The failure profile can affect a	a distance of 20000 fe	et
c.	Hazard Potential Classifications	<u> </u>	
HAZARI	<u>SIZE</u>	TEST FLOOD RANGE	
Н.	igh Intermediate	PMF	
Adopt	ed Test Flood = PMF	= 2510	CSM
		= 4047	CFS
D.	Overtopping Potential		
	Drainage Area 1030 acres	=1.61sq	. miles
	Spillway crest elevation =	452.5	
	Top of Dam Elevation =	458.0	
Capac "test	um spillway discharge ity without overtopping of dam = flood inflow discharge =	4047	CFS CFS
"test	flood" outflow discharge =	2666	CFS

TALCOTT RESERVOIR DIKE NO. 2

レー メな

Talcott Reservoir - Dike No. 2 Dam Failure Analysis

- 1. Failure discharge with pool at Em. Spillway (elev. 452.5) = 4200 CFS
- 2. Depth of water in reservoir at time of failure = 13.5 ft.
- 3. Maximum depth of flow downstream of dam = 13± ft.
- 4. Water surface elevation just downstream)
 of dam at time of failure) = 452±

The failure discharge of 4200 CFS will enter and flow down-stream 19000 feet until the brook crosses North Main Street.

Valley storage in this 19000 feet length of brook is not significant in reducing the discharge, and additional damage is likely downstream. The failure profile will have the following hydraulic characteristics:

DISTANCE FROM THE DAM	WATER SURFACE ELEVATION	DEPTH (ft.)	REMARKS
0 300 4900 9300 14500 19000	452.5 434.5 223.3 161.3 141.3 101.±	13.5 4.5 3.3 1.3 1.3	At Dike North Main Street

NOTES:

"Rule of Thumb" Guidance for Estimating Downstream Dam Failure Analysis

DATA

Name of Dam Talcott Reservoir - Dike No. 2
Location West Hartford, Connecticut
Drainage Area 1.6 sq. mi., Top of Dam 458.0
Spillway Type None , Crest of Spillway 452.5 (Main Dam)
Surface Area @ Crest Elev65.7 Acres =0.10sq. mi.
Pool Bottom Near Dam = 439
Assumed Side Slopes of Embankments = 2H:1V
Depth of Pool at Dam (Yo) = 13.5 Feet
Mid-Height Elev. 445.7
Length of Dam at Crest = 210 Feet
Length of Dam at Mid-Height = 125 Feet
40% of Dam Length at Mid-Height = $W_b = 50$ Feet
Step 1
Storage (S) at time of failure 826 AC-FT
Step 2
Peak Failure Discharge $Q_{p1} = 8/27 W_b \sqrt{g} Y_0^{3/2}$
= (1.68) ($^{\text{W}}_{\text{b}}$) ($^{\text{Y}}_{\text{o}}$) $^{3/2}$ = 4200 cfs
Failure is assumed to coincide with pool elevation at Emergency Spillway Crest of Main Dam.
NOTES:

NKD. BY E21 DATE 3/	0/8/		ANALYSIS	C	PURCELL A ENGINEERS - ARCH	
DAM TAL	COTT- RE	SERVOI	R - L	IKE N	10.2	· ·
	سنزينا بنو بيسي	سبلت فيبلك بنونا				
SECTION	300' 000	~N STRBI	44			
	.486 2/3	-1/2			(S _L)=_•	
USING Q=	n AR	3	n = -03	_ SLOPE	(25)= <u> </u>	
						-
.440.						
430	1					
	100	HANNEL	SECTION	,		
	1		ULL SPILLW	44 Q=_	0	CFS
Qp = 4	200	FS 70	TAL STORAGE	f(S)=_	826	AC-F7
and the second s	سساليا الأسلا		-	·		
ELEY AREA		R	Q	DEPTH		
440 1000	200	5	2500c	10		
432 550	80	2.5	5000	3		
433 1 120		1,5	1700	د		
					1	-
435 434.5			<u> </u>	-		
					· · · · · · · · · · · · · · · · · · ·	<u></u>
434	——————————————————————————————————————					
1 433	1	(CFS)		5000	,	
•		. (2, 5,2		5 -1		
V = (13,5 +	4,5	90+0	300	('	3	AC-F
۶ ۱۰ ۱۰	/ // //	(Z)	(43560	//		
Qp = Qp	(1 - V/s)	= 42	CFS	Vavo		
Vz = (- +)(.3) =		AC-FT		,
·						
Qpz = Qp, (1- VAVE/5)	= 420	CFS	ELE	v = <u>43</u>	
•			•	DEP	TH =	4.5
FULL SPILL	WAY & BERT	#= <u></u>	<u> </u>		· · · · · · · · · · · · · · · · · · ·	
INGREASE	DUE TO DA	H FAILU	KE =	7,5		
	الفراجاء المراجلة	<u> </u>	<u> </u>			e e e e e e e e e e e e e e e e e e e
			A State of the same of the sam		•	
The same of the same of the same of the same	a large and the second	me Printern Beiner Ber !	ಶರ್ಚ್ ೩೯೪ ನಿಂದಾಮ	and Delivery		

· 15 15 15 15 10 10

the months

J. 6.744

The Tan

DATE 2/168	*	AILURG A		Joe N	PURCELL ASSOCIATES ENGINEERS - ARCHITECTS - PLANNER
DAM TALCO	TT RE	SELVOIR	- DIKE	NO. 2	
201111		1 1			· · · · · · · · · · · · · · · · · · ·
SECTION 49	00' D	OWNSTR	EAN	قىلىدىنىغان ئاسىيىتىنىدۇ. ئارىخى	ی دو میشد
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:		
USING Q = 1.486	A R 2/35	1/2	03	SLOPE (5.)= .05
, , , , , , , , , , , , , , , , , , ,	. i. 1 i i i	<u> </u>	,		
					1
-34					
230	,				
424		1			. 1
220	CA	INNNEL S	SCTION		
			IL SPILLWI	ay Q=	O CFS
Qp = 420	0 0			F(S)=	826 ACF
· · · · · · · · · · · · · · · · · · ·		The second of th			
ELEY AREA	WP	e	Q	DEPTA	
22.3 165	60	2.75	3600	3	
224 220	60	3.7	5800	4	The second secon
	<u> </u>				
	*	• •			
			le de le same ()	1
Say		•			
:					,
223.3					
253		•			·
705		(c=5)		5000	
1 11 0 22	\		. 44 / 64		-
V, = (4.5. + 3.3	$-)(\frac{3070}{2})$		4860)(セ)=	2/ AC-F
, ,	<i>,</i> , ,				
QP = QP, (1-	- ''/s) -	410	O CFS	. Vam:	
•					
V2 = (- + -	-)(<i>5</i> ,2	·) =		AC-FT	ا الا الله الله الله الله الله الله الله
QP2 = QP, (1-	AV6/5) :	= 4/0	CFS	ELEV	= SS3'3
•				DEPT	4 = 3.3
FULL SPILLWAY	3 QERTH	1= 0	· · · · · · · · · · · · · · · · · · ·		
INCREASE DU	ETO ON	M FAILUR	æ =	3,3	
دارق داخشت تناسب بالمستحدث بالمستحدث والمستحدث والمستحدث	د در م نگیستیونست درآند.	حاديم والمستورية المعارطات والمعا			

i

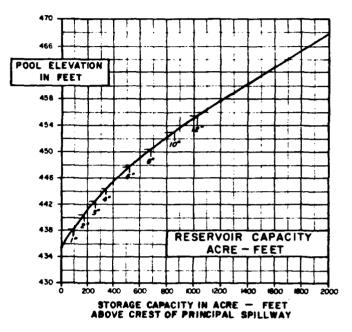
120.55

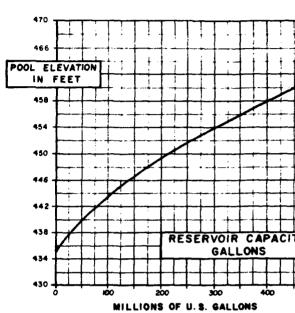
HRD. BY ERT. DATE 4	461	DAM INSPEC			NO. 80 10 PURCELL ASI ENGINEERS - ARCHITE	OF
DAM TA	COTT RE	SERVOIR	- 01	HE NO	. ک	همد سده اسم اسمام ان اسماما
الرازينية والرواز يستولموا مايه سد	93				الواسا بالقاسم	
SECTION	9300 1	DOWN STRE			·	
USING Q=	486 A P 2/3	<1/2 n-	.03	SIOPE (c)= .00	2
	n					
170		· · · · · · · · · · · · · · · · · · ·		<u> </u>		· · · · · · · · · · · · · · · · · · ·
				/		
160-		<u></u>	100	•		
e desire (in la se de servició de la color de servició de la color de servició de la color de servició de la c La color de servició de la color de se	/	HANNEL SE		·		CFS
Qp = 4	100		SPILLWA	•	826	AC-FT
						i
ELEY AREA		R	Q	DEPTA		
161 1000	and the state of t		2200		-	
162 2000	1000	2	7000	2		· · · · · · · · · · · · · · · · · · ·
ere order light of						
	-	المحدد المحدد	- 			
162		. /		······································		-
161.4						
161.3						
1/61	CCC 4000		800	······································		
		(EF3).	<u> </u>	• . • • =		
V. = (3.3 +	1.4 6075	3 /)(4:	4400	(+)=	78	AC-FI
	, ,	- , ,				
Qp = Qp ((1 - ^v /s)	= 3700	CFS	Van	- 69	
		*				
V2 = (3,3 +		/ /=		AC-FT		ļ., .
0. = 0. (1 - VAVE/e)	= 3800	, CEC	f a m	- 111	3
~ b2 - ab, (- 73/				r = <u>161.</u> H =	
FULL SPILL	WAY & BEPT	H= 0			~	 -
INGREASE	DUE TO DA	H FAILURE	= /	,3	·	
	1 1					
	•	D-43				

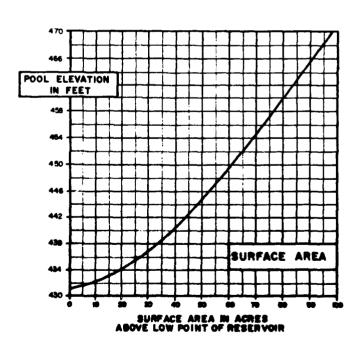
and the second of the second o

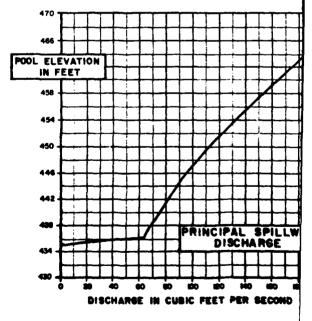
10

V J/C DATE 4/166 HKD. BY ERJ DATE 4/16/6/	DAN FAILUR		JOB N	FURCELL AS	
DAM TALCO	OTT RESERVO	IR DAM	- DIKE A	10. 2,	
SECTION 145	00 ' DOWN STE	EAN	*		
USING Q = 11480	E A R 2/35,1/2	n= 103	SLOPE (5,) = • 6	0086
150		·····			
140		- iai			
	CHANNE	L SECTION			CFS
Qp = 380	OU CFS	FULL SPILLWA	•	826	AC-F7
					1
ELEV AREA	WP R	Q	OEPT#		<u> </u>
141 400	450 1.9	1800		···- ·	
i					
142	· · · · · · · · · · · · · · · · · · ·	······································			<u> </u>
144.5					<u> </u>
77.67					
141.3					
141	1 of (CFS)	, , , , , , , , , , 	£**¢		
			T.		
√' = (1000 400	-)(3560)(t) =	121	AC-F
•		•			
	- v ₁ /s) =3				
Vz = (17 + 17.3	_)(83) =	112	AC-FT		
	VAV6/5) =				7
GP - GP, (1-	737	٢٧٥	ELEV	= <u>146</u> 1= <u>'i</u>	
FULL SPILLWAY	A BERTH =	0	-	\ <u>-</u>	
	ETU DAM FAIL	UREZ	1.3		

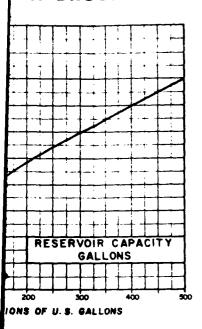

The same of the sa

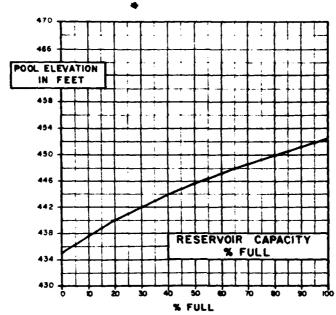

ı

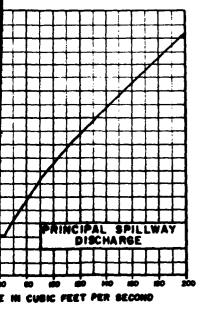

Talcott Reservoir - Dike No. 2


Α,	Size Classification	•	
Height	t of dam =ft.	; henceSmall	nter-
Storag	ge capacity at top of dam (elev. 45		
Adopte	ed size classification: Inte	ermediate	
B.i)	Hazard Potential		
	The potential exists for the los	ss of more than a few lives	
	and excessive economic damage to	numerous homes and buildi	ngs
	in West Hartford.		
	Adopted hazard classification:	High	-
ii)	Impact of Failure of Dam with po	ol at Em. Spillway Crest.	
	It is estimated from the "rule of the following adverse impacts are is dam.		
	a) Loss of homes 20+ b) Loss of buildings 10- c) Loss of highways or roads d) Loss of bridges	1 9 ; ; ; ;	
from	The failure profile can affect a the dam.	distance of 19000 feet	
C.	Hazard Potential Classifications		
HAZAR	<u>SIZE</u>	TEST FLOOD RANGE	
<u>Hi</u>	gh Intermediate	PMF	
Adopt	ed Test Flood = PMF	= <u>2510</u> CS	M
		= 4047 CF	'S
D.	Overtopping Potential		
	Drainage Area 1030 acres	= <u>1.61</u> sq. mi	les
	Spillway crest elevation =	N/A	
	Top of Dam Elevation =	458.0	
Capac	num spillway discharge rity without overtopping of dam =		FS FS
"test	flood" inflow discharge =		FS

RESERVOIR OPERAT
TALCOTT RESERVOIR-HART MEADOW BROOK - SO






OPERATION DATA


ow brook - south branch park river watershed

PERTINENT DATA

The second of th

TOP OF BAM EL. 458.0
DEBIGN HIGH WATER EL. 455.4
CREST EMERGENCY SPILLWAY EL. 455.5
CREST PRINCIPAL SPILLWAY EL. 436.0
INVERT LOW PLOW ORIFICE EL. 431.0
BRAINAGE AREA CONTROLLED 1.61 SQ. MI
1° OF RUNGEF + 86.86 ACRE-PEET
ALL ELEWITTONS REFER TO METROPOLITAN DISTRICT BATUM

CONSTRUCTO BY:
STATE OF CONNECTICUT
SEPARTHENT OF ASSICULTURE B
MATURAL RESOURCES
JOSEPH R. GILL, COMMISSIONER

AGGECIATION WITH THE:

U.S. BEPARTYENT OF ADRICULTURE

SOIL CONSERVATION SERVICE

FUBLIC LAW SOS FUNOS

MENGRED RY: U.S. DEPARTMENT OF ARRICULTURE OSL GOMBERVATION SERVICE STATUM:

COMPLETED AND TIL 1984

Antonio Maria Annonio - Barrero Mili

APPENDIX E

INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS

NOT AVAILABLE AT THIS TIME

END

DATE FILMED Control Co